scholarly journals Seed Viability in Miscanthus Grown in Different Hardiness Zones

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 470D-470
Author(s):  
Courtney L. Tchida ◽  
Mary H. Meyer

Miscanthus is one of the most popular ornamental grasses. Reports of self-seeding however, have occurred in the Central Atlantic states, making it a possible weed threat. Ascertaining whether Miscanthus self-seeds or not may determine its continued use as an ornamental, decorative plant. With more than 50 named cultivars of Miscanthus sinensis and several other Miscanthus species available in the trade, wide morphological variation appears to exist within this genus. Because Miscanthus is a warm-season grass requiring a relatively long growing season, self-seeding may vary depending on the USDA Hardiness Zone in which the plant is grown. Mature inflorescences from 35 different cultivars or species of Miscanthus were collected or acquired from nurseries or arboreta in USDA Zones 4, 5, 6, and 7 in the fall or early winter of 1996. Inflorescences were examined for seed set by hand cleaning. The percentage of viability seed and seed germination was determined by germination in laboratory conditions. Results varied by cultivar or species and as well as by source. A comparison of results will presented and the implications of Miscanthus self-seeding or becoming a potential weed threat will be discussed.

2021 ◽  
Vol 99 (Supplement_2) ◽  
pp. 35-36
Author(s):  
Jennifer J Tucker

Abstract Bermudagrass is the primary warm season perennial forage crop grown in the Southeast (~20 million acres) for livestock and forage operations. While prominent in the region, bermudagrass requires large amounts of fertility and forage quality is moderate relative to other options. There has been great success and a growing interest in interseeding alfalfa into existing bermudagrass stands in the region. This combination eliminates the need for nitrogen fertilization, increases relative forage quality (RFQ) better meeting the nutritional needs of livestock, and decreases the need for supplemental feed. In recent years, research evaluations have been conducted across the Southeast to evaluate the use of alfalfa when incorporated into warm-season grass forage systems under various management strategies. Three projects conducted from 2016–2020 at the University of Georgia Tifton campus evaluated ‘Bulldog 805’ alfalfa interseeded into Tifton-85 bermudagrass (1) when harvested as baleage, (2) under grazing management and(3) in a clipping study to better define defoliation management recommendations. Overall findings from this work observed that alfalfa-bermudagrass mixtures provide greater seasonal herbage accumulation, extend the growing season by three to four months annually, and increase forage DM digestibility and CP compared to bermudagrass alone. Steers on ABG managed under rotational stocking had greater total gain/ha (~%33 increase) due to a higher stocking density throughout the growing season than a bermudagrass monoculture. Results indicate that interseeding alfalfa into bermudagrass is a viable option for southeastern forage systems and can be an effective way to improve forage quality, extend the grazing season, and reduce the need for additional supplementation when fed to livestock.


1987 ◽  
Vol 65 (2) ◽  
pp. 359-365 ◽  
Author(s):  
M. G. Ward ◽  
J. K. Ward

1970 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Bista ◽  
G. B. Khattri ◽  
B. D. Acharya ◽  
S. C. Srivastava

To find out the ability of Orobanche seeds to germinate immediately after seed set, seeds were germinated periodically at an interval of three months for one year in GR24. Some Orobanche seeds were capable of germination immediately after seed set but most required about nine months as after ripening or incubation period to be able to germinate. The phenomenon of after ripening in Orobanche seeds could be taken as an ecological measure to dormant over following unfavorable wet summer season. The growth hormone studies on Orobanche seed germination have shown that GA3 at a concentration of 100 ppm substantially enhanced seed germination when applied during pre-conditioning period. NAA showed some stimulatory effect at 0.5 - 1.0 ppm when applied during post-conditioning period but the hormone if applied during pre-conditioning period inhibited the germination. Kinetin failed to stimulate the germination at all the concentrations tested. Key words: Germination, root-parasite, hormone. Ecoprint Vol.11(1) 2004.


Author(s):  
I. S. Braden ◽  
Kenneth J. Moore ◽  
R. L. Hintz ◽  
M. H. Wiedenhoeft ◽  
E. Charles Brummer ◽  
...  

Agriculture ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 67
Author(s):  
Piotr Żurawik

Crustaceans, including shrimps, are an important group of marine products processed in over 50 countries around the world. It is one of the most profitable and fast-growing processing branches. About 30 to 40% of crustaceans are used immediately after fishing, while 60–70% are processed. This generates thousands of tons of waste, proper management of which becomes increasingly important. The study was conducted in the years 2015–2017. Planting material included rhizomes of Miscanthus sinensis and Miscanthus × giganteus. Shrimp shells, dried and fragmented into 2–3 mm long pieces, were added to the soil at a dose of 5%, 10% and 15%. Mineral soil without the dried waste served as control. pH and substrate salinity were determined both before and after the growing season, and vegetative and generative traits of the plants were assessed. Shrimp biowaste is rich in N, P, K, Ca and Mg, has alkaline pH and high salinity. Its effects on plants depend on its dose and plant species. Miscanthus sinensis turned out more sensitive to the substrate salinity but in both species shrimp biowaste improved their ornamental value. For Miscanthus sinensis the most beneficial dose was 5%, while for Miscanthus × giganteus it was 15%.


1992 ◽  
Vol 70 (8) ◽  
pp. 1596-1602 ◽  
Author(s):  
S. P. Bentivenga ◽  
B. A. D. Hetrick

Previous research on North American tallgrass prairie grasses has shown that warm-season grasses rely heavily on vesicular–arbuscular mycorrhizal symbiosis, while cool-season grasses are less dependent on the symbiosis (i.e., receive less benefit). This led to the hypothesis that cool-season grasses are less dependent on the symbiosis, because the growth of these plants occurs when mycorrhizal fungi are inactive. Field studies were performed to assess the effect of phenology of cool- and warm-season grasses on mycorrhizal fungal activity and fungal species composition. Mycorrhizal fungal activity in field samples was assessed using the vital stain nitro blue tetrazolium in addition to traditional staining techniques. Mycorrhizal activity was greater in cool-season grasses than in warm-season grasses early (April and May) and late (December) in the growing season, while mycorrhizal activity in roots of the warm-season grasses was greater (compared with cool-season grasses) in midseason (July and August). Active mycorrhizal colonization was relatively high in both groups of grasses late in the growing season, suggesting that mycorrhizal fungi may proliferate internally or may be parasitic at this time. Total Glomales sporulation was generally greater in the rhizosphere of cool-season grasses in June and in the rhizosphere of the warm-season grasses in October. A growth chamber experiment was conducted to examine the effect of temperature on mycorrhizal dependence of cool- and warm-season grasses. For both groups of grasses, mycorrhizal dependence was greatest at the temperature that favored growth of the host. The results suggest that mycorrhizal fungi are active in roots when cool-season grasses are growing and that cool-season grasses may receive benefit from the symbiosis under relatively cool temperature regimes. Key words: cool-season grasses, tallgrass prairie, vesicular–arbuscular mycorrhizae, warm-season grasses.


2021 ◽  
Author(s):  
Filippo Guzzon ◽  
Maraeva Gianella ◽  
Jose Alejandro Velazquez Juarez ◽  
Cesar Sanchez Cano ◽  
Denise E Costich

Abstract Background and Aims The long-term conservation of seeds of plant genetic resources is of key importance for food security and preservation of agrobiodiversity. Nevertheless, there is scarce information available about seed longevity of many crops under germplasm bank conditions. Methods Through germination experiments as well as the analysis of historical monitoring data, we studied the decline in viability manifested by 1000 maize (Zea mays subsp. mays) seed accessions conserved for an average of 48 years at the CIMMYT germplasm bank, the largest maize seedbank in the world, under two cold storage conditions: an active (–3 °C; intended for seed distribution) and a base conservation chamber (–15 °C; for long-term conservation). Key Results Seed lots stored in the active chamber had a significantly lower and more variable seed germination, averaging 81.4 %, as compared with the seed lots conserved in the base chamber, averaging 92.1 %. The average seed viability detected in this study was higher in comparison with that found in other seed longevity studies on maize conserved under similar conditions. A significant difference was detected in seed germination and longevity estimates (e.g. p85 and p50) among accessions. Correlating seed longevity with seed traits and passport data, grain type showed the strongest correlation, with flint varieties being longer lived than floury and dent types. Conclusions The more rapid loss of seed viability detected in the active chamber suggests that the seed conservation approach, based on the storage of the same seed accessions in two chambers with different temperatures, might be counterproductive for overall long-term conservation and that base conditions should be applied in both. The significant differences detected in seed longevity among accessions underscores that different viability monitoring and regeneration intervals should be applied to groups of accessions showing different longevity profiles.


2017 ◽  
Vol 10 (3) ◽  
pp. 262-270 ◽  
Author(s):  
Mélissa De Wilde ◽  
Elise Buisson ◽  
Nicole Yavercovski ◽  
Loïc Willm ◽  
Livia Bieder ◽  
...  

Successful invasive plant eradication is rare, because the methods used target the adult stage, not taking into account the development capacity of a large seedbank. Heating by microwave was considered, because it offers a means to quickly reach the temperature required for loss of seed viability and inhibition of germination. Previous results were not encouraging, because homogeneous and deep-wave penetration was not achieved, and the various parameters that can affect treatment effectiveness were incompletely addressed. This study aimed to determine, under experimental conditions, the best microwave treatment to inhibit invasive species seed germination in terms of power (2, 4, 6 kW) and duration (2, 4, 8 min) of treatments and depending on soil moisture (10%, 13%, 20%, 30%) and seed burial depth (2, 12 cm). Three invasive species were tested: Bohemian knotweed, giant goldenrod, and jimsonweed. The most effective treatments required relatively high power and duration (2kW8min, 4kW4min, 6kW2min, and 6kW4min; 4kW8min and 6kW8min were not tested for technical reasons), and their effectiveness diminished with increasing soil moisture with germination percentage between 0% and 2% for the lowest soil moisture, 0% and 56% for intermediate soil moisture, and 27% and 68% in control treatments. For the highest soil moisture, only 2kW8min and 4kW4min reduced germination percentage between 2% and 19%. Occasionally, germination of seeds located at the 12-cm depth was more strongly affected. Giant goldenrod seeds were the most sensitive, probably due to their small size. Results are promising and justify further experiments before developing a field microwave device to treat large volumes of soil infested by invasive seed efficiently and with reasonable energy requirements. Other types of soil, in terms of texture and organic matter content, should be tested in future experiments, because these factors influence soil water content and, consequently, microwave heating.


Crop Science ◽  
2017 ◽  
Vol 57 (6) ◽  
pp. 3343-3351 ◽  
Author(s):  
Andrew R. Jakubowski ◽  
Michael D. Casler ◽  
Randall D. Jackson

Sign in / Sign up

Export Citation Format

Share Document