scholarly journals Somatic Embryogenesis and Plant Regeneration from Roots of Punica granatum L.

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 545F-546 ◽  
Author(s):  
Shailaja Sinha ◽  
Madhuri Sharon

Somatic embryogenesis from apical meristem, cell elongation zone, and cell differentiation zone of roots of Punica granatum L. var. Ganesh was obtained. The basal medium used was Gamborg's B5. 2, 4-D induced white globular callus in root tip explants, which on further subculture to medium containing 0.5 mg/L BAP, produced somatic embryos from the outer surface of the callus. Direct somatic embryogenesis occurred from all the three zones of the root in presence of 2 mg/L kinetin. BAP induced embryogenic callus in elongation and cell differentiation zone segments of the roots, which, on further subculture onto the same medium, produced somatic embryos. NAA caused rhizogenesis in all the three root segments. Differentiation of somatic embryos into plantlets took place on B5 medium supplemented with 0.01 mg/L NAA + 0.5 mg/l BAP + 2 mg/L kinetin.

1989 ◽  
Vol 19 (2) ◽  
pp. 285-288 ◽  
Author(s):  
S. A. Merkle ◽  
A. T. Wiecko

Tissue cultures were initiated from developing seeds of black locust (Robiniapseudoacacia L.) collected from three trees at weekly intervals from 1 week following anthesis until early fruit maturity. Explants were cultured on media containing 0, 2, or 4 mg/L 2,4-dichlorophenoxyacetic acid and 0 or 0.25 mg/L 6-benzyladenine. Seeds explanted onto hormone-supplemented media remained on these media for 1 or 3 weeks before being placed on hormone-free media, or were maintained on hormone-supplemented media for the entire study. Direct somatic embryogenesis was observed in a single culture, initiated from a seed collected 4 weeks after anthesis and cultured for 1 week on a medium supplemented with 4 mg/L 2,4-dichlorophenoxyacetic acid and 0.25 mg/L 6-benzyladenine before transfer to basal medium. Although it could not be discerned from which part of the explant somatic embryos were derived, secondary embryogenesis continued from the radicles of cotyledonary-stage somatic embryos. Most somatic embryos were well formed, with two distinct cotyledons. Embryos germinated precociously, producing plantlets that were initially weak but later gained vigor and resembled seedlings.


1970 ◽  
Vol 19 (1) ◽  
pp. 89-99
Author(s):  
K. Choudhary ◽  
M. Singh ◽  
M. S. Rathore ◽  
N. S. Shekhawat

This long term study demonstrates for the first time that it is possible to propagate embryogenic Vigna trilobata and to subsequently initiate the differentiation of embryos into complete plantlets. Initiation of callus was possible on 2,4-D. Somatic embryos differentiated on modified MS basal nutrient medium with 1.0 mg/l  of 2,4-D and 0.5 mg/l  of Kn. Sustained cell division resulted in globular and heart shape stages of somatic embryos. Transfer of embryos on to a fresh modified MS basal medium with 0.5 mg/l of Kn and 0.5 mg/l of GA3 helped them to attain maturation and germination. However, the propagation of cells, as well as the differentiation of embryos, were inhibited by a continuous application of these growth regulators. For this reason, a long period on medium lacking these growth regulators was necessary before the differentiation of embryos occurred again. The consequences for improving the propagation of embryogenic cultures in Vigna species are discussed. Key words: Pasture  legume, Vigna trilobata, Globular, Heart shape, somatic embryogenesis D.O.I. 10.3329/ptcb.v19i1.4990 Plant Tissue Cult. & Biotech. 19(1): 89-99, 2009 (June)


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
J. Lema-Rumińska ◽  
K. Goncerzewicz ◽  
M. Gabriel

Having produced the embryos of cactusCopiapoa tenuissimaRitt. formamonstruosaat the globular stage and callus, we investigated the effect of abscisic acid (ABA) in the following concentrations: 0, 0.1, 1, 10, and 100 μM on successive stages of direct (DSE) and indirect somatic embryogenesis (ISE). In the indirect somatic embryogenesis process we also investigated a combined effect of ABA (0, 0.1, 1 μM) and sucrose (1, 3, 5%). The results showed that a low concentration of ABA (0-1 μM) stimulates the elongation of embryos at the globular stage and the number of correct embryos in direct somatic embryogenesis, while a high ABA concentration (10–100 μM) results in growth inhibition and turgor pressure loss of somatic embryos. The indirect somatic embryogenesis study in this cactus suggests that lower ABA concentrations enhance the increase in calli fresh weight, while a high concentration of 10 μM ABA or more changes calli color and decreases its proliferation rate. However, in the case of indirect somatic embryogenesis, ABA had no effect on the number of somatic embryos and their maturation. Nevertheless, we found a positive effect of sucrose concentration for both the number of somatic embryos and the increase in calli fresh weight.


1970 ◽  
Vol 20 (2) ◽  
pp. 157-170 ◽  
Author(s):  
Richard M.S. Mulwa ◽  
Margaret M.A. Norton ◽  
Robert M. Skirvin

Abundant embryogenic callus was obtained from leaf and floral explants of "Chancellor" grape by continuous culture for 12 weeks on Nitsch and Nitsch basal medium supplemented with 9 μM 2, 4-D + 17 μM IASP + either 1 μM BA or 1 μM TDZ (ECIM) in darkness. They were successfully maintained by a five to six week subculture interval on NN medium containing 2 μM 2, 4-D + 0.2 μM TDZ + 4 μM IASP (LTMM). Near synchronous embryo developed from embryogenic callus on medium containing 10 μM IASP + 8 μM NOA + 1 μM TDZ + 1 μM ABA + 2.5 g/l AC (EDMM).  Individually separated somatic embryos were germinated on both NN and half strength of MS containing 0.5 μM BA + 0.025 μM NAA, respectively; normal plantlet conversion from embryos was low (35%).  Whole fruiting plants were obtained. Aberrant embryo development was characterized by failure to form functional shoot meristems following the initial cotyledon expansion during germination. These observations indicate that the embryo conversion stage of the regeneration is difficult and remains a limiting factor requiring more empirical experimentation for improvement in grape tissue culture.   Key words: Chancellor grape, Regeneration, Somatic embryogenesis   D.O.I. 10.3329/ptcb.v20i2.6895   Plant Tissue Cult. & Biotech. 20(2): 157-170, 2010 (December)


2006 ◽  
Vol 1 (3) ◽  
pp. 1934578X0600100
Author(s):  
Bishnu P. Chapagain ◽  
Vinod Saharan ◽  
Dan Pelah ◽  
Ram C. Yadav ◽  
Zeev Wiesman

This study describes the effects of plant growth regulators, explants, and somatic embryogenesis on in vitro production of the steroidal sapogenin, diosgenin, in callus cultures of the Balanites aegyptiaca (L.) Del.(desert date). Root, shoot, hypocotyl, and epicotyl callus culture of B. aegyptiaca, were raised on MS basal media supplemented with various combinations of either 2,4-D and NAA alone, or with BAP. The diosgenin content (on a dry weight basis) was found to be highest when calli were cultured in MS basal medium supplemented with 1.0 mg l−1 2,4-D alone and/or in combination with 0.5 mg l−1 BAP. However, the callus growth was highest in media supplemented with 2.5 or 3.0 mg l−1 2,4-D. MS basal media supplemented with 2,4-D 2.5 mg l−1 alone and in combination with 0.5 mg l−1 BAP induced pre-embryogenic callus formation on root cultures. When these pre-embryogenic callus cultures were used to establish cell suspension cultures, two growth densities were obtained in embryogenic suspension cultures, inducing clusters of somatic embryos at various stages of development. The maximum number of somatic embryos were obtained at the fifth week on the medium supplemented with 1.0 mg l−1 2,4-D. However, the diosgenin content in these somatic cells was found to be lower compared to the explant calluses. This study revealed that production of diosgenin in callus cultures of B. aegyptiaca is possible, but the amount is significantly affected by the growth regulators, type of explants, and somatic embryogenesis.


2020 ◽  
Vol 20 (4) ◽  
pp. 179 ◽  
Author(s):  
NUR AJIJAH

<p>ABSTRAK</p><p><br />Embriogenesis somatik kakao (Theobroma cacao L.) telah banyak<br />dilaporkan  dengan  penggunaan  zat  pengatur  tumbuh  (ZPT)  yang<br />bervariasi. Penggunaan thidiazuron untuk menginduksi embriogenesis<br />somatik kakao telah dilaporkan melalui dua tahap induksi kalus. Penelitian<br />ini bertujuan untuk mengevaluasi efektivitas thidiazuron menginduksi<br />embriogenesis somatik kakao melalui satu tahap induksi kalus. Penelitian<br />dilaksanakan di Laboratorium Kultur Jaringan Unit Pengembangan Benih<br />Unggul, Badan Litbang Pertanian, Bogor. Empat taraf thidiazuron (0; 2,5;<br />5,0; dan 10 µg/l) dikombinasikan dengan 2,4-D 2 mg/l<br />digunakan untuk<br />menginduksi kalus dan embrio somatik 3 klon kakao (TSH858, Sca6, dan<br />ICS13) menggunakan eksplan mahkota bunga dan staminoid. Media dasar<br />DKW tanpa ZPT digunakan sebagai kontrol. Penelitian disusun dalam<br />rancangan lingkungan acak lengkap dengan lima ulangan. Setiap unit<br />percobaan terdiri dari sepuluh eksplan. Peubah yang diamati meliputi<br />persentase pembentukan kalus umur 2 dan 4 minggu, penampakan visual<br />kalus, persentase eksplan membentuk embrio somatik, dan jumlah embrio<br />somatik per eksplan umur 10 dan 14 minggu. Kalus terbentuk pada media<br />dengan penambahan hanya 2,4-D atau 2,4-D + thidiazuron, namun embrio<br />somatik hanya terbentuk pada media dengan penambahan 2,4-D +<br />thidiazuron. Pembentukan kalus dan embrio somatik sangat dipengaruhi<br />oleh tipe eksplan dan genotipe. Klon Sca6 lebih responsif dibandingkan<br />TSH858 dan ICS13 dan eksplan staminoid lebih responsif dibandingkan<br />mahkota bunga. Hasil studi ini menunjukkan terdapat pengaruh interaksi<br />yang kuat antara ZPT, genotipe, dan tipe eksplan terhadap pembentukan<br />kalus dan embrio somatik kakao serta tidak terdapat perbedaan hasil yang<br />nyata antara pembentukan embrio somatik melalui satu dan dua tahap<br />induksi kalus.<br />Kata kunci: Theobroma cacao L., genotipe, eksplan, zat pengatur tumbuh</p><p>ABSTRACT</p><p><br />Somatic embryogenesis of cacao (Theobroma cacao L.) has been<br />widely reported with varied of plant growth regulators (PGR) used. The<br />use of thidiazuron in inducing somatic embryogenesis of cacao has been<br />reported through a two-step callus induction. The study aimed to evaluate<br />the effectiveness of thidiazuron in inducing somatic embryogenesis of<br />cacao through a one-step of callus induction. The study was conducted at<br />the tissue culture laboratory of Agricultural Seed Development Unit,<br />Indonesian Agency for Agricultural Research and Development, Bogor.<br />Four levels of thidiazuron (0; 2.5; 5.0; and 10 µg/l) in combination with 2<br />mg/l  2,4-D  were  used  for  inducing  callogenesis  and  somatic<br />embryogenesis of three cacao clones (TSH858, Sca6, and ICS13) using<br />petals and staminoids explants. DKW basal medium without PGR was<br />used as a control. The result showed that callus were formed on medium<br />containing only 2,4-D or 2,4-D + thidiazuron, while embryos were only<br />formed on medium containing 2,4-D + thidiazuron. The formation of<br />callus and somatic embryos were highly affected by explant types and<br />genotypes. Sca6 clone was more responsive than TSH858 and ICS13 and<br />staminoids were more responsive than petals. The results of this study<br />revealed that there was a strong interaction between the PGRs, genotypes,<br />and explant types on the formation of cacao callus and somatic embryos.<br />Results of this study also showed no significant difference between the<br />formation of somatic embryos through one and two steps of callus<br />induction.<br />Keywords: Theobroma cacao L., genotypes, explants, plant growth<br />regulators</p>


2016 ◽  
Vol 71 (2) ◽  
Author(s):  
Fetrina OKTAVIA ◽  
. SWANTO ◽  
Asmini BUDIANI

SummaryTissue culture technique for arabica coffeefaces some problems, mainly in plantletsregeneration from cultured explants. Theobjectives of this experiment were to examine theeffect 2,4-D and 2-ip combinations on somaticembryogenesis and regeneration of arabicacoffee from several different explants. Basalmedium used in this experiment was MS mediumwith ½ concentration of macro and micro salts.Experiment to induce primary somatic embryos(SE) was arranged in factorial randomizedcomplete design with 10 repeats. The first factorwas the type of explants, leaf, epicotyl, hipocotyland root explants. The second factor was plantgrowth regulator i.e. combination of 1  M 2,4-Dwith 5, 10, 15, 20  M and combination of 5  M2,4-D with 5, 10, 15 and 20  M 2-ip. To multiplySE, secondary SE was induced from primary SEon medium containing combination of 0.6  MIAA and 13.3; 17.8 and 22.2  M BAP.Cotyledonary SE were germinated on mediacontaining GA 3 (0, 5, 10 and 15  M), and thenregenerated on medium free of growth regulator.Plantlets with 4-5 leaf pairs were transfered intothe soil medium for acclimatization. The resultsshow that primary SE can be induced from allexplants with the highest frequency on mediumcontaining 1  M 2,4-D and 15  M 2-ip.Induction of primary SE, in leaf explant wasmore effective than other explants. Mediumcontaining 0.6  M IAA and 22.2  M BAP gavethe highest percentage of SE multiplication i.e.52.6% with average SE number of 6.25. Plantletsregeneration can be conducted by culturing SEon maturation medium free of growth regulatorfor one month followed by germinating onmedium containing GA 3 , and then culturing onmedium free of growth regulator again. Thehighest percentage of germinated embryos wasobtained after three weeks and six weekscultured in the medium containing 5  M GA 3 , i.e49% and 90.15 respectively. From total plantletsobtained, 75% of them were normal. Sixtypercents of the young plants grew well in thegreenhouse.RingkasanTeknik kultur jaringan tanaman kopi arabikamasih menghadapi beberapa kendala terutamapada tingkat regenerasi planlet dari eksplan yangdikulturkan. Penelitian ini bertujuan untukmengetahui pengaruh kombinasi 2,4-D dan 2-ipterhadap embriogenesis somatik dan regenerasikopi arabika dari berbagai eksplan. Media dasaryang digunakan adalah medium MS ½konsentrasi garam makro dan mikro. Percobaaninduksi embrio somatik (ES) primer disusunmenurut rancangan acak lengkap faktorial dengan10 ulangan. Faktor pertama adalah jenis eksplan,erdiri atas daun, epikotil, hipokotil dan akar invitro. Faktor kedua adalah zat pengatur tumbuh,yaitu kombinasi 1 M 2,4-D dengan 5, 10, 15dan 20M 2-ip, serta kombinasi 5 M 2,4-Ddengan 5, 10, 15 dan 20 M 2-ip. Untuk mem-perbanyak jumlah ES yang didapatkan, dilakukaninduksi ES sekunder dari ES primer pada mediumyang mengandung kombinasi 0,6 M IAA dan13,3; 17,8 dan 22,2 M BAP. ES fase kotiledonkemudian dikecambahkan pada medium yangmengandung GA 3 (0, 5, 10 dan 15 M) danselanjutnya diregenerasikan pada medium tanpazat pengatur tumbuh. Planlet yang mempunyai4-5 pasang daun dipindahkan ke medium tanahuntuk aklimatisasi. Hasil yang diperolehmenunjukkan bahwa ES primer dapat diinduksipada semua eksplan yang digunakan denganfrekuensi tertinggi pada medium yang me-ngandung 1 M 2,4-D dan 15 M 2-ip. InduksiES primer pada eksplan daun lebih efektifdibandingkan eksplan lainnya. Untuk per-banyakan ES, medium yang mengandung IAA0,6 M dan BAP 22,2 M memberikanpersentase tertinggi pembentukan ES sekunderyaitu 52,6% dengan rata-rata jumlah ES 6,25.Regenerasi planlet dapat dilakukan denganmengkulturkan ES pada medium maturasi tanpazat pengatur tumbuh selama satu bulan, kemudiandikecambahkan dalam medium yang mengan-dung GA 3 , dan selanjutnya dipindah ke mediumtanpa zat pengatur tumbuh kembali.Perkecambahan ES tertinggi diperoleh padamedium dengan penambahan GA 3 5 M yaitu40,9% setelah tiga minggu dan 90,1% setelahenam minggu. Dari total planlet diperoleh 75%planlet normal. Hasil aklimatisasi menunjukkanbahwa 60% bibit mampu bertahan di rumah kaca.


HortScience ◽  
2014 ◽  
Vol 49 (12) ◽  
pp. 1558-1562 ◽  
Author(s):  
Yuyu Wang ◽  
Faju Chen ◽  
Yubing Wang ◽  
Xiaoling Li ◽  
Hongwei Liang

High-frequency somatic embryogenesis and plant regeneration were achieved from immature cotyledonary-stage embryos in the endangered plant, Tapiscia sinensis Oliv. Plant growth regulators with different concentrations and combinations on embryogenesis capacity were studied. The optimal explants for in vitro somatic embryogenesis were immature embryos in T. sinensis. A high callus induction rate of 100% was achieved on Murashige and Skoog (MS) basal medium supplemented with 1.0 mg·Ll−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5% (w/v) activated charcoal. Alternatively, a high induction rate (96.16%) of somatic embryogenesis was obtained on MS basal medium supplemented with the combination of 0.05 mg·L−1 α-naphthaleneacetic acid (NAA) and 0.2 mg·L−1 6-benzylaminopurine (6-BA), and somatic embryos proliferated fastest on the mentioned medium supplemented with 0.5% (w/v) activated charcoal and 3% (w/v) sucrose, inoculation of explants proliferating 21 times in the 23-day subculture. Of the 100 plantlets transferred to field after the acclimation, 95 (95%) survived. Based on the histocytological observations, the development of somatic embryos was similar to that of zygotic embryos. There were two accumulation peaks of starch grains in the embryogenic calli and in the globular-stage embryos, both closely related to the energy supply, and the embryoids were of multicelluar origin.


HortScience ◽  
2006 ◽  
Vol 41 (5) ◽  
pp. 1325-1329 ◽  
Author(s):  
Martín Mata-Rosas ◽  
Ángel Jiménez-Rodríguez ◽  
Victor M. Chávez-Avila

Plants of Magnolia dealbata were regenerated from zygotic embryos through somatic embryogenesis and direct organogenesis. Medium and incubation conditions were determinating factors for the development of morphogenetic responses. Photoperiodic exposure was a limiting factor in the general development of the explants, and incubation in darkness allowed their development. The highest formation of shoots per responding explant were obtained on woody plant (WP) medium supplemented with 13.3 μM or 22.2 μM 6-benzylaminopurine (BA) in combination with 2.26 μM or in absence of 2,4-dichlorophenoxyacetic acid (2,4-D) from which 2.5 shoots per explant were induced. Subcultures on WP medium, supplemented with polyvinylpyrrolidone (PUP) 40,000 1 g·L–1) avoided necrosis of explants. Somatic embryos were formed in 85% of explants cultivated on WP medium with 2,4-D (2.3 μM or 4.5 μM); 20% induced indirect embryogenesis and 65% formed direct somatic embryogenesis. The plants were transferred to soil to acclimatize under greenhouse conditions, achieving 90% survival. Somatic embryo conversion to plantlets was obtained with subculture on WP basal medium without growth regulators. In vitro culture can play a key role in the propagation and conservation of this endangered species.


Sign in / Sign up

Export Citation Format

Share Document