differentiation zone
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Xinlong Xiao ◽  
Jieqiong Zhang ◽  
Viswanathan Satheesh ◽  
Fanxiao Meng ◽  
Wenlan Gao ◽  
...  

Abstract Coordinated distribution of Pi between roots and shoots is an important process that plants use to maintain Pi homeostasis. SHR (SHORT-ROOT) is well-characterized for its function in root radial patterning1-3. Here, we demonstrate a new role of SHR in controlling phosphate (Pi) allocation from roots to shoots by regulating PHOSPHATE1 (PHO1) in the root differentiation zone. We recovered a weak mutant allele of SHR in Arabidopsis which accumulates much less Pi in the shoot and shows constitutive Pi starvation response (PSR) under Pi-sufficient condition. Besides, Pi starvation suppresses SHR protein accumulation and releases its inhibition on the HD-ZIP Ⅲ transcription factor PHB. PHB accumulates and directly binds the promoter of PHO2 to upregulate its transcription, resulting in PHO1 degradation in the xylem-pole pericycle cells. Our findings reveal a previously unrecognized mechanism of how plants repress Pi translocation from roots to shoots in response to Pi starvation.


2018 ◽  
Author(s):  
Joseph G. Dubrovsky

AbstractThe pericycle gives rise to lateral roots (LRs) and lateral meristems (LMs; cambium and phellogen), however, a thorough clonal analysis of pericycle cell lineage has not been investigated. This study fills in this gap and addresses pericycle impact in LR and LM development.Heath-shock inducible DS1 transposition in 35S-DS1-H2B:YFP; HS-Ac seedlings results in production of YFP-labelled cell clones. These clones in pericycle cell derivatives were identified with a confocal microscopy and subjected to 3D reconstructions and analysis.Participation of pericycle founder cells (FC) in LR formation is more variable than previously considered. LR initiation was found most commonly involved the specification of just one FC in the longitudinal and one or two cells in transverse direction. After LR initiation, FCs continue to be recruited in both directions from pre-existing cells. Anticlinal divisions in the pericycle resulting in LMs start already in the young differentiation zone where only the protoxylem is differentiated.The clonal analysis demonstrated that pericycle cell activity related to LR formation is not separated in time and space from that related to LM formation and that LR FC recruitment is a gradual process. The analysis demonstrated that immediate pericycle progeny lack self-renewal capacity.


2017 ◽  
Vol 214 (4) ◽  
pp. 1423-1431 ◽  
Author(s):  
Hai Tao Liu ◽  
Rudi Schäufele ◽  
Xiao Ying Gong ◽  
Hans Schnyder

2017 ◽  
Author(s):  
Isidro Abreu ◽  
Ángela Saéz ◽  
Rosario Castro-Rodríguez ◽  
Viviana Escudero ◽  
Benjamín Rodríguez-Haas ◽  
...  

Abstract:Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legumeMedicago truncatula, zinc is delivered in a similar fashion as iron,i.e.by the root vasculature into the nodule and released in the infection/differentiation zone. There, zinc transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor.MtZIP6(Medtr4g083570) is aM. truncatulaZinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of rhizobia-infected cells in the nodule. Down-regulatingMtZIP6expression levels with RNAi does not result in any strong phenotype when plants are being watered with mineral nitrogen. However, these silenced plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, as a consequence of the loss of 80% of their nitrogenase activity. The reduction of this activity was not the result of iron not reaching the nodule, but an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone.


2015 ◽  
Vol 35 (1) ◽  
pp. 128-133
Author(s):  
NÁTALI M. SOUZA ◽  
PEDRO H. WEIRICH NETO

Among studies focused on increasing soybean grain yield, the ones related to sowing process are the most significant. Considering that soybean has an epigeal emergence, it becomes difficult to hint at the length covered by hypocotyl up to soil surface, or the actual planting depth. This study aimed to find an indicator that allows the identification of an ideal soybean planting depth. For this purpose, two complementary assays has been carried out in a greenhouse. The first aimed to identify structures that could be indicators of seed planting depth, on a medium-textured soil from Campos Gerais region, in the state of Paraná, Brazil. Spring NK 8350 cultivar seeds were sown at five theoretical depths (1, 2, 3, 4 and 5 cm). As seedlings emerged, the “differentiation zone” and the “root curve” depths were measured. The second assay was the validation of the suggested indicators in assay 1 from two soils, one medium-textured and one clay-textured. For this assay, it was used BRS 232. Both the methodologies showed high correlation with the theoretical planting depth. Although their correlation coefficient values were close, the differentiation zone appeared to be the most efficient reference with less planting depth overestimation.


2012 ◽  
Vol 87 (4) ◽  
pp. 422-431 ◽  
Author(s):  
A.J.S. Bakhoum ◽  
P.I. Ndiaye ◽  
C.T. Bâ ◽  
J. Miquel

AbstractThe current study was designed to increase the spermatological ultrastructural database on Digenea, thus contributing to the future establishment of phylogenetic relationships within this group based on ultrastructural characteristics of both spermiogenesis and spermatozoa. Spermiogenesis in Elstia stossichianum begins with the formation of a differentiation zone containing two centrioles, two striated rootlets, a nucleus, several mitochondria and an intercentriolar body constituted by seven electron-dense layers. Each centriole develops into a free flagellum growing orthogonally to the median cytoplasmic process. Proximo-distal fusion of the flagella with the median cytoplasmic process occurs after flagellar rotation. Both nucleus and mitochondria migrate before the complete proximo-distal fusion of both flagella with the median cytoplasmic process. Finally, the constriction of the ring of arched membranes gives rise to the young spermatozoon. The mature spermatozoon of E. stossichianum exhibits two axonemes of different length of the 9+‘1’ trepaxonematan pattern, a nucleus, a mitochondrion, two bundles of parallel cortical microtubules, external ornamentation of the plasma membrane, a lateral expansion, spine-like bodies, cytoplasmic ornamented buttons and granules of glycogen. The formation of cytoplasmic ornamented buttons during the final stages of spermiogenesis is reported here for the first time.


2012 ◽  
Vol 57 (1) ◽  
Author(s):  
Abdoulaye Bakhoum ◽  
Papa Ndiaye ◽  
Aminata Sène ◽  
Cheikh Bâ ◽  
Jordi Miquel

AbstractThe spermiogenesis process in Wardula capitellata begins with the formation of a differentiation zone containing two centrioles associated with striated rootlets and an intercentriolar body. Each centriole develops into a free flagellum orthogonal to a median cytoplasmic process. Later these flagella rotate and become parallel to the median cytoplasmic process, which already exhibits two electron-dense areas and spinelike bodies before its proximodistal fusion with the flagella. The final stage of the spermiogenesis is characterized by the constriction of the ring of arched membranes, giving rise to the young spermatozoon, which detaches from the residual cytoplasm. The mature spermatozoon of W. capitellata presents most of the classical characters reported in digenean spermatozoa such as two axonemes of different lengths of the 9 + “1” trepaxonematan pattern, nucleus, mitochondrion, two bundles of parallel cortical microtubules and granules of glycogen. However, some peculiarities such as two lateral expansions accompanied by external ornamentation of the plasma membrane and spinelike bodies characterize the mature sperm. Moreover, a new spermatological character is described for the first time, the so-called cytoplasmic ornamented buttons.


2008 ◽  
Vol 53 (1) ◽  
Author(s):  
Jordi Miquel ◽  
Zdzisław Świderski ◽  
John Mackiewicz ◽  
Mohammed Ibraheem

AbstractThe ultrastructure of spermiogenesis in Wenyonia virilis Woodland, 1923, a caryophyllaeid cestode from the silurid Nile fish Synodontis schall (Bloch et Schneider, 1801), is described by means of transmission electron microscopy (TEM) for the first time. Spermiogenesis follows the characteristic caryophyllidean type and is initiated by the formation of a differentiation zone. This area, delimited at its base by a ring of arching membranes and bordered by cortical microtubules, contains two centrioles associated with typical striated rootlets with a reduced intercentriolar body between them. The apical area of the differentiation zone exhibits electron-dense material that is present only during the early stages of spermiogenesis. Only one of the centrioles develops into a free flagellum that grows at an angle of >90° in relation to the cytoplasmic extension. Spermiogenesis is also characterized by a flagellar rotation and a proximodistal fusion of the flagellum with the cytoplasmic extension. The most interesting features observed in W virilis are the presence of a reduced, very narrow intercentriolar body and the unique type of flagellar rotation >90°. Results are compared with those described in two caryophyllideans, Glaridacris catostomi Cooper, 1920 and Khawia armeniaca (Cholodkovski, 1915). Contrary to the original report of Świderski and Mackiewicz (2002), that flagellar rotation has never been observed in spermiogenesis of G. catostomi, re-assessment of their description and illustrations leads us to conclude that flagellar rotation must logically occur in that species. The value of various morphological features of sperm in phylogenetic inference is discussed.


2006 ◽  
Vol 51 (3) ◽  
Author(s):  
Aneta Yoneva ◽  
Katia Georgieva ◽  
Yana Mizinska ◽  
Boyko Georgiev ◽  
Stoyanka Stoitsova

AbstractThe ultrastructure of the mature spermatozoon and the spermiogenesis of a cestode belonging to the family Metadilepididae is described for the first time. The mature spermatozoon of Skrjabinoporus merops is characterized by twisted peripheral microtubules, the presence of a single crested body, periaxonemal sheath and electron-dense rods, and the absence of intracytoplasmic walls and inclusions (glycogen or proteinaceous granules); no peripheral microtubules where nucleus contacts the external plasma membrane. Four morphologically distinct regions of the mature spermatozoon are differentiated. The proximal part (Region I) contains a single crested body, periaxonemal sheath is absent in some (proximal) sections and is present in others situated closer to the nucleus. The central Region II is nucleated, and is followed by Region III that contains a periaxonemal sheath. The distal pole, Region IV, is characterized by disintegration of the axoneme. Spermiogenesis follows the type III pattern (Bâ and Marchand 1995) although in S. merops a slight flagellar rotation is observed. The differentiation zone is characterized by the absence of striated roots and intercentriolar body; two centrioles are present, one of which gives rise to a free flagellum. The latter rotates and undergoes proximodistal fusion with the cytoplasmic protrusion of the differentiation zone. Spermiological characters of S. merops are similar to those of the families Taeniidae and Catenotaeniidae. The mature spermatozoon differs from those of the Dilepididae (where the metadilepidid species have previously been classified) by the lack of glycogen.


2006 ◽  
Vol 51 (4) ◽  
Author(s):  
Aneta Yoneva ◽  
Jordi Miquel ◽  
Zdzisław Świderski ◽  
Katia Georgieva ◽  
Yana Mizinska ◽  
...  

AbstractThe ultrastructure of the spermiogenesis of a dilepidid cestode species is described for the first time. The spermiogenesis of Angularella beema is characterised by absence of both flagellar rotation and proximodistal fusion. The differentiation zone is surrounded by cortical microtubules and is delimited by a ring of arching membranes. It contains two centrioles, one of which develops the axoneme that grows directly into the elongating cytoplasmic protrusion. This pattern of spermiogenesis was described as the Type IV spermiogenesis of cestodes. Among cestodes, similar pattern of spermiogenesis is known in the family Hymenolepididae and in some representatives of the family Anoplocephalidae. The mature spermatozoon of A. beema consists of five regions differing in their ultrastructural characteristics. It is characterised by the presence of cortical microtubules (spirally arranged at angle of 30–40° to the spermatozoon axis) and a single crested body. There is a periaxonemal sheath in certain parts of the spermatozoon as well as glycogen-like granules between the periaxonemal sheath and the cortical microtubules. The comparisons of the mature spermatozoon of A. beema with those of other two dilepidid species (Dilepis undula and Molluscotaenia crassiscolex) demonstrate some variation within the family: presence of periaxonemal sheath in A. beema and D. undula and its absence in M. crassiscolex; presence of electron-dense rods in D. undula and their absence in A. beema.


Sign in / Sign up

Export Citation Format

Share Document