scholarly journals Conservation Tillage of Sweetpotato

HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 605F-606
Author(s):  
Lewis W. Jett ◽  
Timothy P. Talbot

A cultural practice that can modify and conserve the soil environment is needed in sweetpotato [Ipomoea batatas (L.) Lam.] production. The objective of this research was to evaluate conventional and conservation tillage of sweetpotato with four cover crop species (fallow, ryegrass, rye, and wheat). The cover crops were seeded in late Oct. 1995, and the sweetpotato transplants (`Beauregard') were transplanted at two dates the following spring (May and June). Conservation tillage significantly lowered soil temperature (10 cm depth) during storage root initiation and development. Moreover, each cover crop significantly reduced weed emergence and soil erosion. The ryegrass conservation tillage treatment significantly increased marketable yield of sweetpotato in the first planting date, while rye and wheat performed equally well in the second planting date. In the second planting date, white grub (Phyllophaga ephilida Say) injury to storage roots was significantly higher in the conservation tillage treatments. However, conservation tillage seems to be a viable alternative to the conventional method of sweetpotato production.

2019 ◽  
Vol 46 (No. 2) ◽  
pp. 57-64
Author(s):  
Marzena Błażewicz-Woźniak ◽  
Dariusz Wach ◽  
Elżbieta Patkowska ◽  
Mirosław Konopiński

The experimental design included seven cover crop species and six kinds of soil tillage in the field cultivation of carrot. The use of cover crops had a positive impact on the yield of marketable roots of carrot in comparison with the cultivation without the cover crops. A significant increase of marketable yield was noted after phacelia, buckwheat, mustard and sunflower. The flat ploughless tillage significantly reduced the marketable yield of roots in comparison with traditional ploughing. The largest marketable yield of roots was obtained from cultivation on ridges after mixing the biomass of buckwheat or phacelia or mustard with the soil, and the smallest, after reduced spring tillage using aggregate without cover crops. The largest marketable yield in flat ploughless tillage was obtained when using grubber before winter, and the biomass of phacelia was mixed with soil. Growing carrot on the ridges had a positive influence on increasing the share of the marketable yield of roots in comparison with other variants of cultivation including the conventional tillage. The all cover crops with the exception of spring vetch significantly increased the share of marketable roots in the yield compared with cultivation without cover crops. The largest percentage of the marketable yield was noted after use of phacelia. 


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 477E-478 ◽  
Author(s):  
Lewis W. Jett

Growth of the sweetpotato [Ipomoea batatas (L.) Lam.] is subject to environmental variation. High soil temperatures can restrict storage root initiation and development. Moreover, fluctuating soil moisture can have a pronounced effect on yield and quality. Cover crops, used in a conservation tillage system, could modify the soil environment. The objective of this research was to investigate the effects of conservation tillage on sweetpotato growth. A rye cover crop was broadcast seeded in Fall 1996, and sweetpotatoes were transplanted into the undisturbed residue the following spring. A fallow, unseeded plot represented the conventional method of sweetpotato culture. Plants were harvested at 14-day intervals commencing at 21 days after transplanting. Leaf area and dry weights of the storage roots and vines were recorded. Soil moisture was measured by taking soil cores at the depth of rooting (10 cm). The sweetpotatoes growing in the undisturbed rye residue had a significantly greater leaf area, vine weight, root set, and yield (particularly large grade class) relative to conventional-tilled sweetpotatoes. The rye residue was very effective in reducing soil evaporation.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 523e-523
Author(s):  
Lewis W. Jett

The marketable yield of the sweetpotato [Ipomoea batatas (L.) Lam.] can be limited by environmental variation. Cover crops may ameliorate water and temperature stress encountered during the growing season while reducing soil erosion and weed competition. The objective of this research was to investigate the commercial production of sweetpotatoes with cover crops in a conventional or conservation tillage system. Rye, ryegrass, wheat, and triticale were broadcast-seeded in Fall 1995 and 1996. Three weeks before transplanting, the cover crops were plowed-in or retained as an in situ mulch. Uniform slips of `Beauregard' sweetpotato were transplanted in May and June of each year, and standard cultural practices (with the exception of cultivation) were performed. In 1996 and 1997, conservation tillage increased marketable yield of sweetpotato 15% with a noticeable improvement in quality. Ryegrass produced the largest quantity of biomass and was effective in reducing soil temperature during storage root initiation and development. Conservation tillage resulted in a significantly higher root set relative to the control. Conservation tillage seems to have advantages as an alternative tillage method for sweetpotato production.


HortScience ◽  
2012 ◽  
Vol 47 (11) ◽  
pp. 1596-1602 ◽  
Author(s):  
Erin R. Haramoto ◽  
Daniel C. Brainard

Strip tillage (ST) is a form of conservation tillage in which disturbance is limited to the crop rows while the rest of the soil remains undisturbed. Compared with conventional, full-width tillage (CT), ST may reduce tillage costs, protect soil from erosion, and benefit cool-season crops including cabbage (Brassica oleracea L. var. ‘capitata’) by improving water retention, reducing soil temperatures, and improving the synchrony of inorganic nitrogen (IN) supply with crop demand. Field experiments were conducted in 2010 and 2011 in central Michigan to assess the effects of tillage (CT vs. ST) and a preceding cover crop (none vs. oats, Avena sativa L. var. ‘Ida’) on soil temperature, moisture, N dynamics, and yields in transplanted cabbage. Oats were sown in April and terminated 2 to 3 weeks before cabbage transplanting in early July. In-row (IR) soil moisture, temperature, and IN content were assessed from transplanting until cabbage harvest in October. In 2010, IR soil moisture was higher season-long in ST compared with CT and in oat compared with non-oat treatments, but these effects were not detected in 2011. Tillage and oat residue had little or no effect on IR soil temperature. Shortly after tillage in both years, soil IN availability was greater in CT treatments without oats compared with both ST treatments and CT with oats. However, these differences dissipated after 3 to 4 weeks, and hypothesized improvements in N release patterns under ST were not observed. No differences in cabbage marketable yield were detected in either year, although the proportion of plants that produced a marketable head was lower in cover-cropped plots in 2010. These findings suggest that soil conservation and input savings potentially associated with ST production systems may be attained without a yield penalty. More research is needed to understand and optimize cover crop management in ST systems to realize potential benefits in N use efficiency, moisture retention, and soil temperature moderation.


2004 ◽  
Vol 47 (3) ◽  
pp. 381-386 ◽  
Author(s):  
Júlio C. Franchini ◽  
Marcos A. Pavan ◽  
Mário Miyazawa

The objective of this study was to evaluate if cover crops can absorb P from the upper layers and transport it in their roots to subsoil layers. Samples of an Oxisol were placed in PVC columns. Super phosphate fertilizer was applied to the 0-10 cm soil surface layers. The cover crops tested were: Avena strigosa, Avena sativa, Secale cereale, Pisum sativum subsp arvense, Pisum sativum, Vicia villosa, Vicia sativa, Lupinus angustifoliu, Lupinus albus, and Triticum aestivum. After a growth period of 80 days the cover crop shoots were cut off and the soil was divided into 10cm layers and the roots of each layer were washed out. The roots and shoots were analyzed separated for total P contribution to the soil. Considerable amount of P was present in the roots of cover crops. Vicia sativa contained more than 60% of total plant P in the roots. The contribution of Vicia sativa to soil P bellow the fertilized zone was about 7 kg ha-1. It thus appeared that there existed a possibility of P redistribution into the soil under no tillage by using cover crops in rotation with cash crops. Vicia sativa was the most efficient cover crop species as P carrier into the roots from superficial layer to lower layers.


1988 ◽  
Vol 34 (3) ◽  
pp. 201-206 ◽  
Author(s):  
C. S. Rothrock ◽  
W. L. Hargrove

The influence of winter legume cover crops and of tillage on soil populations of fungal genera containing plant pathogenic species in the subsequent summer sorghum crop were examined in field studies. Legume cover crops significantly increased populations of Pythium spp. throughout the sorghum crop compared with a rye cover crop or no cover crop. This stimulation of the populations of Pythium spp. was not solely due to colonization of cover-crop residue, as populations were significantly greater at the time the legume cover crop was desiccated. Removal of aboveground residue generally decreased populations of Pythium spp. in soil. Incorporation of residue by tillage increased populations of Pythium spp. at some sampling dates. Legumes differed in the magnitude of stimulation, with hairy vetch stimulating Pythium spp. more than crimson clover. Cover crop treatments did not consistently influence soil populations of Fusarium spp., Rhizoctonia solani, Rhizoctonia-like binucleate fungi, or Macrophomina phaseolina. Macrophomina phaseolina populations were significantly greater under no tillage.


2020 ◽  
Vol 6 (2) ◽  
pp. 64
Author(s):  
Imtiaz Ahmad ◽  
María del Mar Jiménez-Gasco ◽  
Dawn S. Luthe ◽  
Mary E. Barbercheck

Fungi in the genus Metarhizium (Hypocreales: Clavicipitaceae) are insect pathogens that can establish as endophytes and can benefit their host plant. In field experiments, we observed a positive correlation between the prevalence of M. robertsii and legume cover crops, and a negative relationship with brassicaceous cover crops and with increasing proportion of cereal rye in mixtures. Here, we report the effects of endophytic M. robertsii on three cover crop species under greenhouse conditions. We inoculated seeds of Austrian winter pea (Pisum sativum L., AWP), cereal rye (Secale cereale L.), and winter canola (Brassica napus L.) with conidia of M. robertsii to assess the effects of endophytic colonization on cover crop growth. We recovered M. robertsii from 59%, 46%, and 39% of seed-inoculated AWP, cereal rye, and canola plants, respectively. Endophytic M. robertsii significantly increased height and above-ground biomass of AWP and cereal rye but did not affect chlorophyll content of any of the cover crop species. Among inoculated plants from which we recovered M. robertsii, above-ground biomass of AWP was positively correlated with the proportion of colonized root but not leaf tissue sections. Our results suggest that winter cover crops may help to conserve Metarhizium spp. in annual cropping systems.


2019 ◽  
Vol 35 (5) ◽  
pp. 467-474 ◽  
Author(s):  
Ebony G. Murrell ◽  
Swayamjit Ray ◽  
Mary E. Lemmon ◽  
Dawn S. Luthe ◽  
Jason P. Kaye

AbstractArbuscular mycorrhizal fungi (AMF) can increase plant nutrient uptake and chemical defense production, both of which can improve plants’ ability to resist insect herbivory. Cover crops—non-commercial species planted in between cash crops in a crop rotation—can naturally alter both soil nutrients and AMF. We tested whether different cover crop species alter AMF colonization, plant nutrient status and plant–insect interactions in a subsequent maize crop. Cover crop species were either non-mycorrhizal, non-leguminous (canola, forage radish), mycorrhizal non-leguminous (cereal rye, oats), mycorrhizal leguminous (clover, pea) or absent (fallow). We measured the cascading consequences of cover crop treatment on maize root AMF colonization, maize growth and performance of an herbivorous insect (European corn borer) feeding on the maize. Maize AMF colonization was greater in plots previously planted with mycorrhizal (rye, oats) than non-mycorrhizal (canola, radish) cover crops or no cover crop (fallow). AMF colonization was linked to increased plant phosphorous and nitrogen, and maize growth increased with low plant N:P. Induced jasmonic acid pathway plant defenses increased with increasing maize growth and AMF colonization. European corn borer survivorship decreased with lower plant N:P, and insect development rate decreased with increased induced plant defenses. Our data describe a cascade in which cover crop species selection can increase or decrease mycorrhizal colonization of subsequent maize crop roots, which in turn impacts phosphorus uptake and may affect herbivory resistance in the maize. These results suggest that farmers could select cover crop species to manage nutrient uptake and pest resistance, in order to amend or limit fertilizer and pesticide use.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1760
Author(s):  
Paul Cottney ◽  
Lisa Black ◽  
Ethel White ◽  
Paul N. Williams

The aim of this study is to identify species of cover crops that cause an increase in biomass and total nutrient accumulation in response to manure/slurry. This could improve nutrient efficiency and intensify the benefits from over-winter cover crops in arable rotations and improve following commercial crop yields. In a pot experiment, sixteen cover crops were grown for 100 days in response to slurry. Growth and nutrient (N, P, K, Mg and S) accumulation were measured, and then residue was reincorporated into the soil with spring barley (Hodeum vulgare L.) sown and harvested for yield. In response to slurry, tillage radish (Raphanus sativus L.) increased N accumulation by 101% due to a significant increase in biomass and % N (p < 0.05) over its relative control plots. Significant interactions between species and the application of slurry were found in cover crop biomass, cover crop and spring barley nutrient uptake, as well as cover crop carbon accumulation, particularly in the brassica species used. Slurry integrated with cover crops both reduced the cover crop C:N ratio and enhanced nutrient cycling compared to the control when soil mineral nitrogen (SMN) and spring barley crop N offtake were pooled. However, this was not observed in the legumes. This study shows that slurry integration with cover crops is a promising sustainable farming practice to sequester N and other macro-nutrients whilst providing a range of synergistic benefits to spring barley production when compared to unplanted/fallow land rotations. However, this advantage is subject to use of responsive cover crop species identified in this study.


2017 ◽  
Vol 31 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Cody D. Cornelius ◽  
Kevin W. Bradley

The recent interest in cover crops as component of Midwest corn and soybean production systems has led to the need for additional research, including the effects of residual corn and soybean herbicide treatments on fall cover crop establishment. Field studies were conducted in 2013, 2014, and 2015 in Columbia, Missouri to investigate the effects of common residual herbicides applied in corn and soybean on establishment of winter wheat, tillage radish, cereal rye, crimson clover, winter oat, Austrian winter pea, Italian ryegrass, and hairy vetch. Cover crops were evaluated for stand and biomass reduction 28 d after emergence (DAE). Rainfall from herbicide application to cover crop seeding date was much greater in 2014 and 2015, which resulted in less carryover in these years compared to 2013. When averaged across all herbicides evaluated in these experiments, the general order of sensitivity of cover crops to herbicide carryover, from greatest to least was Austrian winter pea=crimson clover>oilseed radish>Italian ryegrass>hairy vetch>wheat >winter oat>cereal rye. Cereal rye had the fewest instances of biomass or stand reduction with only four out of the 27 herbicides adversely effecting establishment. Pyroxasulfone consistently reduced Italian ryegrass and winter oat biomass at least 67% in both the corn and soybean experiments. In the soybean experiment, imazethapyr- and fomesafen-containing products resulted in severe stand and biomass reduction in both years while flumetsulam-containing products resulted in the greatest carryover symptoms in the corn experiment. Results from these experiments suggest that several commonly used corn and soybean herbicides have the potential to hinder cover crop establishment, but the severity of damage will depend on weather, cover crop species, and the specific herbicide combination.


Sign in / Sign up

Export Citation Format

Share Document