scholarly journals Water Relations, Growth, and Carbon Isotope Discrimination of Drought-stressed Bigtooth Maples Indigenous to New Mexico, Texas, and Utah

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 771F-772
Author(s):  
Emad Bsoul* ◽  
Rolston St. Hilaire

Although valued for its fall foliage color, bigtooth maple (Acer grandidentatum Nutt.) is not widely used in managed landscapes. Furthermore, information on the tolerance of bigtooth maples to drought is scant. We studied water relations, plant development, and carbon isotope composition of bigtooth maples indigenous to New Mexico, Texas, and Utah. Plants were field grown in New Mexico using a pot-in-pot nursery production system. Plants were maintained as well-irrigated controls or irrigated after the weight of pots decreased by 35% due to evapotranspiration. Drought treatment lasted 71 days. Among the drought-stressed plants, plants native to Logan Canyon in Utah (designated UW2), had the greatest root: shoot dry weight ratio (3.0), while plants with the lowest root: shoot dry weight ratio (0.9) were half siblings from a tree native to the Lost Maples State Park in Texas (designated LMP5). Among the five sources we tested, LMP5 had the greatest (1242 cm2) leaf area, while UW2 plants had the smallest (216 cm2). Regardless of the treatment, plants from LMP5 had the highest shoot dry weight (25.7 g). Plants showed no differences neither among sources nor between treatments in relative water content, specific leaf weight, xylem diameter, root dry weight, plant dry weight, relative growth rate, and carbon isotope discrimination, which averaged - 26.53%. The lack of differences in these parameters might be due to selection of these sources from provenances we deemed to be the most drought tolerant. Our selection was based on the results of a previous greenhouse study of 15 bigtooth maple sources. We conclude that these sources, and in particular, plants from LMP5 in Texas, might hold promise for use in areas prone to drought.

HortScience ◽  
2007 ◽  
Vol 42 (5) ◽  
pp. 1167-1173 ◽  
Author(s):  
Emad Bsoul ◽  
Rolston St. Hilaire ◽  
Dawn M. VanLeeuwen

Although bigtooth maple (Acer grandidentatum Nutt.) is an ornamental plant that might thrive in managed landscapes in arid and semiarid regions, little information on the drought tolerance of bigtooth maples appears to be available. We studied water relations, plant development, and carbon isotope composition of bigtooth maples indigenous to New Mexico, Texas, and Utah that were field-grown in New Mexico using a pot-in-pot nursery production system. Plants were maintained as well-irrigated controls or irrigated after the weight of pots decreased by 35% due to evapotranspiration. Bigtooth maples subjected to drought had more negative predawn leaf water potentials (−0.76 MPa) than the plants in the control treatment (−0.64 MPa). Drought did not affect midday leaf water potential of seed sources. Trees native to the Lost Maples State Natural Area in Vanderpool, TX (designated LMP5), had the greatest leaf area (1236 cm2) among plants from all sources, while those native to Logan Canyon in Cache County, UT (designated UW2), had among the smallest leaf area (216 cm2). Leaf area ratio (LAR) was highest in plants from LMP5 (24.23 cm2·g−1), which suggests that they have potential for more carbon assimilation than the other plants tested. Plants from LMP5 had the highest leaf area/xylem diameter ratio (135 cm−2·mm−1). This ratio was 5.8 times higher than that of UW2, which had among the lowest leaf area/xylem diameter ratios. The high leaf area/xylem diameter ratio of LMP5 plants relative to UW2 plants indicates that LMP5 plants had a larger surface area of tissues that transpire relative to those that transport water. Treatment did not affect stomatal conductance (g S) or transpiration, but g S and transpiration were positively correlated for both drought-stressed (r 2 = 0.801) and well-irrigated plants (r 2 = 0.759). Plants from New Mexico (designated DS) had the lowest transpiration rate (2.32 mmol·m−2·s−1), lowest g s (52.1 mmol·m−2·s−1), largest xylem diameter (11 mm), and had among the largest shoot dry weight (DW) and plant height. Plants did not differ either among sources or between treatments in the ratio of variable to maximal fluorescence (mean = 0.64), relative water content (averaged 57%), specific leaf weight, stem DW, root DW, and plant DW. Carbon isotope discrimination (Δ) averaged −26.53‰ and did not differ among plant sources or irrigation treatments. This suggests that Δ might not be effective in screening bigtooth maples for drought tolerance. Low transpiration rate, g S, and high shoot dry weight in DS plants and traits, such as a high LAR in plants from LMP5, suggest that plants selected from these provenances might effectively endure deficit irrigation.


2020 ◽  
Vol 47 (4) ◽  
pp. 355
Author(s):  
Shek M. Hossain ◽  
Josette Masle ◽  
Andrew Easton ◽  
Malcolm N. Hunter ◽  
Ian D. Godwin ◽  
...  

Drought is a major constraint to canola production around the world. There is potential for improving crop performance in dry environments by selecting for transpiration efficiency (TE). In this work we investigated TE by studying its genetic association with carbon isotope discrimination (Δ) and other traits, e.g. specific leaf weight (SLW) and leaf chlorophyll content (SPAD). Among the 106 canola genotypes – including open-pollinated, hybrid, inbred types and cytoplasmic variants – tested in the field and glasshouse there was significant genotypic variation for TE, Δ, plant total dry weight, SLW and SPAD. Strong negative correlations were observed between TE and Δ (–0.52 to –0.76). Negative correlations between Δ and SLW or SPAD (–0.43 to –0.78) and smaller but significant positive correlations between TE and SLW or SPAD (0.23 to 0.30) suggested that photosynthetic capacity was, in part, underpinning the variation in TE. A cytoplasmic contribution to genetic variation in TE or Δ in canola was also observed with Triazine tolerant types having low TE and high Δ. This study showed that Δ has great potential for selecting canola germplasm with improved TE.


2000 ◽  
Vol 30 (3) ◽  
pp. 428-439 ◽  
Author(s):  
Bert M Cregg ◽  
J Miguel Olivas-García ◽  
Thomas C Hennessey

We analyzed genotypic variation in carbon isotope discrimination (Δ), photosynthetic gas exchange, and needle morphology of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) trees from four seed sources growing in two 26-year-old provenance plantings near Plattsmouth, Neb., and Norman, Okla. The populations studied were from South Dakota, New Mexico, Wyoming, and Nebraska. Net photosynthesis (A) and needle conductance to water vapor (gwv), were measured during the growing season of 1994. Specific leaf area, stomatal density, and Δ were analyzed in needles grown from 1991 to 1994. The southernmost source (New Mexico) had the highest intrinsic water-use efficiency (A/gwv) among the sources studied. Carbon isotope discrimination was correlated with growth (r = -0.81, P < 0.05), A/gwv (r < -0.54, P < 0.001), and gwv (r > 0.46, P < 0.05) but not A. Variation in Δ was significant among seed sources and years (P < 0.001). We observed a strong genotype × environment interaction in Δ resulting from geographic location but not moisture availability within locations. We hypothesize that the genotype × environment interaction is related to variation in growth phenology among the seed sources. Improving water-use efficiency or growth of ponderosa pine via Δ will require an understanding in genotypic variation in growth rhythms.


2000 ◽  
Vol 30 (10) ◽  
pp. 1581-1590 ◽  
Author(s):  
J Miguel Olivas-García ◽  
Bert M Cregg ◽  
Thomas C Hennessey

As part of a program to select ponderosa pine (Pinus ponderosa Dougl. ex Laws.) genotypes for improved drought tolerance, we examined physiological and morphological characteristics of 12 half-sib families of ponderosa pine from four seed sources; New Mexico, South Dakota, Nebraska, and Wyoming. We analyzed genetic variation in carbon isotope discrimination (Δ), photosynthetic gas exchange, needle morphology, and growth of 2-year-old seedlings from the four seed sources grown under two levels of moisture availability. To gain a better understanding of within-provenance variation and identify opportunities to refine selection strategies, we also examined family within seed source variation in the traits. Water stress significantly (P < 0.05) reduced net photosynthesis (A), needle conductance to water vapor (gwv), carbon isotope discrimination (Δ), and growth of the seedlings as compared to well-watered seedlings. However, instantaneous water use efficiency (A/gwv) did not differ between water treatments. Seedlings from New Mexico had significantly lower gwv and higher A/gwv than seedlings from the other sources. Carbon isotope discrimination was lowest for seedlings from New Mexico and Nebraska. Families within seed sources varied significantly in A, gwv, stomatal density, needle length, height increment, and Δ. Carbon isotope discrimination was significantly correlated with gwv but not with A, supporting results from mature trees suggesting that variation in Δ in ponderosa pine is more related to gwv than to A. Seed source × water treatment interactions were not observed for any of the traits analyzed. These results support our previous assertion that genotype × environment interaction in Δ of mature ponderosa pine trees from these sources grown in Nebraska and Oklahoma was related to factors other than moisture availability.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2449 ◽  
Author(s):  
M. Hussain ◽  
Manuel Reigosa ◽  
Adele Muscolo

Phenolic compounds, hydroquinone and cinnamic acid derivatives have been identified as major allelochemicals with known phytotoxicity from allelopathic plant Acacia melanoxylon R. Br. Several phenolic compounds such as ferulic acid (FA), p-hydroxybenzoic acid (pHBA) and flavonoid (rutin, quercetin) constituents occur in the phyllodes and flowers of A. melanoxylon and have demonstrated inhibitory effects on germination and physiological characteristics of lettuce and perennial grasses. However, to date, little is known about the mechanisms of action of these secondary metabolites in broad-leaved weeds at ecophysiological level. The objective of this study was to determine the response of Rumex acetosa carbon isotope composition and other physiological parameters to the interaction of plant secondary metabolites (PSM) (FA and pHBA) stress and the usefulness of carbon isotope discrimination (Δ13C) as indicative of the functional performance of intrinsic water use efficiency (iWUE) at level of plant leaf. R. acetosa plant were grown under greenhouse condition and subjected to PSM stress (0, 0.1, 0.5, 1.0, and 1.5 mM) for six days. Here, we show that FA and pHBA are potent inhibitors of Δ13C that varied from 21.0‰ to 22.9‰. Higher pHBA and FA supply enhanced/retard the Nleaf and increased the Cleaf while ratio of intercellular CO2 concentration from leaf to air (Ci/Ca) was significantly decreased as compared to control. Leaf water content and leaf osmotic potential were decreased following treatment with both PSM. The Ci/Ca decreased rapidly with higher concentration of FA and pHBA. However, iWUE increased at all allelochemical concentrations. At the whole plant level, both PSM showed pronounced growth-inhibitory effects on PBM and C and N concentration, root fresh/dry weight, leaf fresh/dry weight, and root, shoot length of C3 broad leaf weed R. acetosa. Carbon isotope discrimination (Δ) was correlated with the dry matter to transpiration ratio (transpiration efficiency) in this C3 species, but its heritability and relationship to R. acetosa growth are less clear. Our FA and pHBA compounds are the potent and selective carbon isotope composition (δ13C) inhibitors known to date. These results confirm the phytotoxicity of FA and pHBA on R. acetosa seedlings, the reduction of relative water content and the induction of carbon isotope discrimination (Δ) with lower plant biomass.


2005 ◽  
Vol 56 (2) ◽  
pp. 135 ◽  
Author(s):  
H. Hokmabadi ◽  
K. Arzani ◽  
P. F. Grierson

Pistachio is considered a potential crop for many semi-arid regions affected by salinisation. We examined the effects of salinity on growth of 3 pistachio rootstocks: Badami-e-zarand, Sarakhs, and Ghazvini. Rootstocks were grown in soil in 8-L polyethylene pots and irrigated every 3 days with treatments of 0, 75, 150, or 225 mm NaCl. We measured above-ground biomass, allocation of C to root systems and foliage, and carbon isotope discrimination (Δ) and proline accumulation after 30 days and again after 60 days. Relative growth rate (RGR) decreased with time for all treatments and rootstocks. RGR and net assimilation rates (NARw) decreased with increasing salinity. In all rootstocks, NARw, but not leaf weight ratio (LWR), was significantly correlated with RGR, indicating that NARw was an important factor underlying growth responses among rootstocks. Increased salinity did not affect leaf water potential (Ψleaf), even though proline concentrations increased with increasing NaCl concentration, particularly in the Ghazvini rootstocks. Both Cl– and Na+ concentrations in leaves increased from 30 to 60 days but not in roots and stems. The Sarakhs rootstocks accumulated more of Cl– and Na+ compared with other rootstocks. K+ concentration in the roots and stems of all rootstocks also decreased with increasing salinity at both 30 and 60 days. Concentrations of Ca2+ in stems and root systems, but not in leaves, were also reduced by increased salinity in all rootstocks but only after 60 days. Carbon isotope discrimination (Δ) decreased with increased salinity in the leaves, stems, and roots; however, there was no significant difference in carbon isotope discrimination among rootstocks. We conclude that the Ghazvini rootstock was the most salt tolerant among the rootstocks tested. Carbon isotope discrimination in pistachio rootstocks may be a useful indicator of cumulative salinity history of the plant but is not a suitable indicator for pre-screening of pistachio rootstocks for salinity resistance.


Sign in / Sign up

Export Citation Format

Share Document