scholarly journals Physiological Mechanism and Genotypic Variation in Drought Tolerance of Processing Carrots

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 855C-855 ◽  
Author(s):  
Rajasekaran Lada* ◽  
Azure Stiles ◽  
Christine Pettipas

Processing carrots are mainly grown under rain-fed conditions in Nova Scotia, and thus become vulnerable to frequent periods of drought. Prolonged drought results in significant reductions in the yield and quality of carrot crops. Resistance to water deficit is gene controlled and it is essential to identify the genotypes that withstand water stress. It is equally important to understand the physiological mechanism(s) that contribute to drought tolerance. Physiological measurements were made on eight carrot varieties exposed to natural drought in a controlled greenhouse. Measurements were made on net photosynthesis, soil moisture, relative water content, membrane injury index, xylem pressure potential, and stem elongation. Overall, the slicer variety Bergen sustained normal plant functions under drought stress better than any of the other varieties. Bergen maintained stem elongation, photosynthetic activity, membrane function, and relative water content under droughted conditions. Another study was conducted to identify carrot varieties that are naturally resistant to drought. A mass screening of 85 slicer, dicer, and cut and peel varieties was conducted under greenhouse conditions. Two-week-old seedlings were exposed to gradual water deficit and observed for visual symptoms of wilting each day as soil moisture declined. Each variety was assigned a wilting score based upon the number of days it withstood drought (min = 1, max = 5). The dicer variety, Prodigy, was the only variety to score a 5 indicating the most drought resistance. Other varieties that withstood drought well were `Caropak', `Interceptor', `Oranza', and `Berlanda'. Varieties such as KC713126, Cello712113, and Cello711411 were more sensitive to water deficit and began to wilt 8 days after drought was imposed.

Author(s):  
Mimouna Zerrouki ◽  
Zineb Regagba ◽  
Ahmed Adda

Some mechanisms of drought tolerance and avoidance have been studied in eight barley genotypes. These include three local cultivars (Ttichedrett, Beldi, Saida) and five introduced (Malouh, Seg09, Mari29, Awblack, Beecher) which were grown under three different water supply (100% FC, 60% FC, 30% FC). The increase in intensity of the water deficit reduces differently the relative water content among tested genotypes. Thus, in the treatment of 60% FC, this reduction varies between 1% (Beldi) and 6% (Tichedrett, Beecher), while in the lot of 30% FC it reaches the limits of 3% (Beldi) and 18% (Seg09). The results show that plants grown under water deficit (60% CC, 30% FC) accumulate significantly soluble sugars (r = 0.54**) and K+ (r = 0.26**) compared to control plants (100% CC). Thus, under 30% FC, the accumulation of soluble sugars reached values of 195% and 208% observed at Mari29 and Awblack. The accentuation of the water deficit causes a significant reduction of the RWL particularly after 120 mn (r = -0.27**) which is accompanied by an increase of the stomatic resistance (r = 0.53**). To limit dehydration under the water deficit, tested genotypes were distinguished into three groups by adopting avoidance, tolerance or by combining the two strategies.


2020 ◽  
Vol 19 (3) ◽  
pp. 108
Author(s):  
SETIAWAN SETIAWAN ◽  
TOHARI TOHARI ◽  
DJA’FAR SHIDDIEQ

<p>ABSTRAK<br />Nilam (Pogostemon cablin Benth) merupakan salah satu tanaman<br />penghasil minyak atsiri yang dikenal dengan minyak nilam (patchouli oil).<br />Salah satu kendala dalam pengembangan tanaman nilam adalah peka<br />terhadap kekurangan air. Perubahan iklim cenderung menyebabkan lebih<br />sering terjadi kekeringan di sejumlah wilayah termasuk Indonesia sehingga<br />dalam pengembangan tanaman nilam diperlukan varietas toleran terhadap<br />cekaman kurang air. Terdapat tiga varietas unggul nilam (Tapaktuan,<br />Sidikalang, dan Lhokseumawe) dengan produksi minyak (290-375 kg/ha)<br />dengan kadar patchouli alkohol 32–33%. Penelitian bertujuan untuk<br />mengevaluasi respon fisiologis 4 varietas/aksesi tanaman nilam terhadap<br />cekaman kurang air. Penelitian dilaksanakan di rumah kaca di Bogor pada<br />tahun 2012. Penelitian menggunakan RAK faktorial dengan tiga ulangan.<br />Faktor  pertama  4  varietas/aksesi  nilam  (V)  yaitu  Sidikalang,<br />Lhokseumawe, Tapaktuan, dan Bio-4. Faktor kedua empat interval<br />penyiraman (W) yaitu 1, 3, 6, dan 9 hari sekali. Evaluasi pengaruh<br />cekaman kurang air dilakukan terhadap beberapa karakter fisiologi<br />tanaman nilam. Pengamatan dilakukan antara lain terhadap peubah kadar<br />lengas tanah, konduktivitas stomata (Gs), laju transpirasi (Tr), kandungan<br />air nisbi (KAN), potensial air daun (PAD) dan kandungan prolin daun.<br />Hasil penelitian menunjukkan bahwa terjadi penurunan kadar lengas tanah,<br />konduktivitas stomata, laju transpirasi, dan KAN pada semua varietas,<br />sedangkan PAD dan kadar prolin meningkat seiring dengan semakin<br />lamanya interval penyiraman. Kadar prolin tertinggi pada interval 9 hari<br />sekali pada varietas Sidikalang. Tidak terdapat perbedaan respon<br />varietas/aksesi nilam yang diuji.<br />Kata kunci: Pogostemon cablin Benth, cekaman kurang air, karakter<br />fisiologis.</p><p>ABSTRACT<br />Patchouli (Pogostemon cablin Benth) is one of plant that produces<br />patchouli oil call patchouli oil. However, patchouli is susceptible to<br />drought. The effect of global warming which changes rainfall pattern<br />caused droughts in several regions including Indonesia. Therefore, it is<br />important to find patchouli variety which is relatively tolerant to drought.<br />Tapaktuan, Sidikalang, dan Lhokseumawe are three varieties of patchouli<br />which produce high essential oil (290-375 kg/ha) with high patchouli<br />alcohol content (32–33%). The objective of this research was to evaluate<br />the physiological responses of four varieties/clone of patchouli to drought.<br />The experiment was conducted at greenhouse at Cimanggu, Bogor from<br />February to July 2012. The research was designed in randomized factorial<br />block design (RBD) with three replications. The first factor was four<br />varieties/clone of patchouli (V) Sidikalang, Lhokseumawe, Tapaktuan, and<br />Bio-4. The second factor was four watering intervals (W) every 1, 3, 6<br />and 9 days of watering. Parameters evaluated were physiological<br />characteristics, soil moisture content, stomatal conductance, transpiration<br />rate (Tr), leaf water potential, relative water content, and proline content of<br />leaf. The results showed that soil moisture content, stomatal conductivity,<br />transpiration rate and relative water content decreased, while leaf water<br />potential and proline levels increased along with the increase of watering<br />intervals. The highest proline level was at interval of nine days watering<br />treatment on Sidikalang varieties. However, all varieties/clone have not<br />different responses to water deficit.<br />Key words: Pogostemon  cablin  Benth,water  deficit,  physiological<br />characteristics</p>


HortScience ◽  
2009 ◽  
Vol 44 (2) ◽  
pp. 459-462 ◽  
Author(s):  
Yiwei Jiang ◽  
Huifen Liu ◽  
Van Cline

Accurate, rapid, and nondestructive estimates of turfgrass leaf water status are important for site-specific irrigation and drought stress management. The objective of this study was to identify changes and correlations among the canopy reflectance, canopy temperature, and leaf relative water content (RWC) of perennial ryegrass (Lolium perenne L.) under water deficit conditions. Six cultivars of perennial ryegrass were subjected to dry-downs in the field from May to Aug. 2007 and from June to Aug. 2008. Turf quality was positively correlated with soil moisture (SM), RWC, and normalized difference vegetation index (NDVI), but negatively correlated with canopy and ambient temperature differentials (ΔT). ΔT was well correlated with RWC (r = –0.77 to –0.78) and SM (r = –0.66 to –0.74), whereas SM was correlated with RWC (r = 0.64 to 0.74) across seasons in both years. When a wide range of stress symptoms occurred in July and Aug., RWCs became highly correlated with ΔT (r = –0.80 to –0.89) and NDVI (r = 0.77 to 0.81), whereas ΔT was correlated with NDVI (r = –0.70 to –0.80) in both years. SM was well correlated with RWC (r = 0.71 to 0.80), NDVI (r = 0.70 to 0.73), and ΔT (r = –0.76 to –0.78) in July and August in both years. These results suggest that changes in ΔT can be used to predict well the leaf water and soil moisture content of perennial ryegrass under water deficit conditions. Combined with NDVI, the correlations can be used for direct mapping of the variability in grass water status, thus improving irrigation management.


2015 ◽  
Vol 10 (4) ◽  
pp. 208 ◽  
Author(s):  
Lorenzo Barbanti ◽  
Ahmad Sher ◽  
Giuseppe Di Girolamo ◽  
Elio Cirillo ◽  
Muhammad Ansar

A better understanding of plant mechanisms in response to drought is a strong premise to achieving high yields while saving unnecessary water. This is especially true in the case of biomass crops for non-food uses (energy, fibre and forage), grown with limited water supply. In this frame, we investigated growth and physiological response of two genotypes of biomass sorghum (<em>Sorghum bicolor</em> (L.) Moench) to contrasting levels of soil moisture in a pot experiment carried out in a greenhouse. Two water regimes (high and low water, corresponding to 70% and 30% field capacity) were applied to JS-2002 and Trudan-8 sorghum genotypes, respectively bred for dry sub-tropical and mild temperate conditions. Two harvests were carried out at 73 and 105 days after seeding. Physiological traits (transpiration, photosynthesis and stomatal conductance) were assessed in four dates during growth. Leaf water potential, its components and relative water content were determined at the two harvests. Low watering curbed plant height and aboveground biomass to a similar extent (ca. 􀀀70%) in both genotypes. JS-2002 exhibited a higher proportion of belowground to aboveground biomass, <em>i.e</em>., a morphology better suited to withstand drought. Despite this, JS-2002 was more affected by low water in terms of physiology: during the growing season, the average ratio in transpiration, photosynthesis and stomatal conductance between droughty and well watered plants was, respectively, 0.82, 0.80 and 0.79 in JS-2002; 1.05, 1.08 and 1.03 in Trudan-8. Hence Trudan-8 evidenced a ca. 20% advantage in the three traits. In addition, Trudan-8 could better exploit abundant moisture (70% field capacity), increasing aboveground biomass and water use efficiency. In both genotypes, drought led to very low levels of leaf water potential and relative water content, still supporting photosynthesis. Hence, both morphological and physiological characteristics of sorghum were involved in plant adaptation to drought, in accordance with previous results. Conversely, the common assumption that genotypes best performing under wet conditions are less suited to face drought was contradicted by the results of the two genotypes in our experiment. This discloses a potential to be further exploited in programmes of biomass utilization for various end uses, although further evidence at greenhouse and field level is needed to corroborate this finding.


2020 ◽  
Vol 48 (1) ◽  
pp. 234-244
Author(s):  
Edinéia M.M. BARTIERES ◽  
Silvana P.Q. SCALON ◽  
Daiane M. DRESCH ◽  
Edvânia A.S. CARDOSO ◽  
Mailson V. JESUS ◽  
...  

In this research it was hypothesized that Campomanesia xanthocarpa can overcome some level of water deficiency by adjusting physiological parameters and that shading minimizes the water deficit effects while maintaining elevated photosynthetic rates and relative water content of the leaves and makes a resumption of metabolism and growth when the water supply is normalized. The seedlings were submitted to two water regimes (continuous irrigation - CI and intermittent irrigation - II), three shading percentages (0, 30 and 70%) and six evaluation times (Start - T0, 1st Photosynthesis Zero - 1st P0, 1st Recovery - 1st REC, 2nd Photosynthesis Zero - 2nd P0, 2nd Recovery - 2nd REC and END). Plants under water deficit at 0% shading led to a reduction in photosynthetic metabolism, relative water content (RWC), leaf area, number of leaves, and height, especially during the stress periods 1st and 2nd P0. The 30 and 70% shading mitigated the stressful effect of water deficit on C. xanthocarpa seedlings. The results did not confirm the hypothesis that C. xanthocarpa seedlings are intolerant to water deficit since, although sensitive, they presented a potential for recovery of photosynthetic and growth characteristics under all cultivation conditions. It was concluded that that shading minimizes the stressful effects of water deficit.


Author(s):  
K.D. Nkoana ◽  
Abe Shegro Gerrano ◽  
E.T. Gwata

The genetic potential for drought tolerance in cowpea within the small holder sector has not been fully exploited in South Africa. Thus, a drought evaluation experiment was conducted at the ARC-VOP to evaluate 28 cowpea germplasm accessions including two controls viz. IT96D-602 (drought tolerant) and TVU7778 (susceptible to drought) in the drought screening house using plastic box evaluation method in January, 2017. Genotypes raised for three weeks were subjected to 5 weeks of water stress treatment to determine their physiological response through leaf wilting index, relative water content and proline content followed by re-watering to determine genotype (s) with ability to recover from drought stress. Analyses of variance showed highly significant differences in response to moisture stress among the cowpea accessions for the selected physiological traits except for leaf wilting index at week two of drought stress. Stem greenness and recovery appeared to be a reliable indicator of drought tolerant genotypes which was readily observed in Acc1257, Acc1168, Acc2355, IT96D-602 and Acc5352 which also correlated significantly and positively with relative water content and proline content. The genotypes responded differently to drought stress indicating that there is sufficient genetic variability that can be utilized further in breeding for drought stress within the cowpea species.


2021 ◽  
Vol 22 (2) ◽  
pp. 124-131
Author(s):  
ANANTA VASHISTH ◽  
AVINASH GOYAL ◽  
P. KRISHANAN

For generating different weather conditions during various phenological stages, experiments were conducted on two varieties of wheat (HD-2967 and HD-3086) sown on three different dates at the research farm of IARI, New Delhi during rabi 2015-16 and 2016-17. Soil temperature, soil moisture, leaf area index, biomass, chlorophyll content, radiation interceptions were measured during different crop growth stages. Number of days taken for each phenological stage was observed and thermal time for different phenological stages were calculated. Results showed that first sown crop had higher value of crop growth parameters and yield as compared to second and third sown crop.HD-3086 had higher value of LAI, biomass and yield than HD-2967. Grain yield had significant positive correlation with growing degree days during grain filling stage. Soil temperature measured at 2.21 PMat 5, 10, 15, 20 cm depth had 1-5°C lower value than the air temperature. Soil moisture measured at 0-15, 15-30, 30-45 and 45-60 cm depths had slightly higher soil moisture for HD-3086 as compared to corresponding value in HD-2967 during emergence, flowering and grain filling stages. Percentage relative water content in HD-2967 was found to be higher in first sown crop followed by second and third sown crop. However, in HD-3086, percentage relative water content was found to be higher in first sown crop followed by third and second sown crop. Grain yield had significant positive correlation with relative water content during different phenological stages. HD-3086hadhigherradiation use efficiency as compared to HD-2967 in all weather conditions.


2017 ◽  
Vol 62 (3) ◽  
pp. 213-227 ◽  
Author(s):  
Manal Hefny ◽  
Abdelraheim Ali ◽  
Tarek Byoumi ◽  
Mohamed Al-Ashry ◽  
Salah Okasha

Water scarcity is a universal environmental constraint for agricultural sustainability and production. Two field experiments were accomplished during the 2012 and 2013 growing seasons in two sites: the experimental farm of Suez Canal University, Ismailia and Romana Province, North Sinai, Egypt to evaluate 21 genotypes of maize comprising six inbred lines and their 15 F1 crosses for their drought tolerance. The experiments were arranged as a split-plot design with three replications, where moisture levels (100 and 50% of evapotranspiration) and maize genotypes were allocated to main plots and sub-plots, respectively. Results showed reduction in performance for most measured traits in response to water stress with varying degrees with yield plant-1 being the most affected. Inversely, proline and relative water content and anthesis-silking interval were increased. Correlation results confirmed the reduced grain yield with the increasing anthesis-silking interval, and suggested kernels row-1, relative water content, peroxidase activity and rows ear-1 in Ismailia, and rows ear-1, relative water content, peroxidase activity, kernel weight in Romana were indirect selection criteria for increasing yield in water scarcity environments. Principal component (PC) analysis showed that three PCs having Eigen value >1 explained 70.67 and 70.16%; 69.79 and 71.38% of the total variability among genotypes in control and stress conditions in Ismailia and Romana, respectively. The crosses P1?P3, P4?P6, P3?P5 and P1?P5 were classified as drought tolerant under Ismailia and Romana conditions. On the other hand, P1xP4, P3xP4, and P4 were considered as drought sensitive in Ismailia conditions. In addition, P5, P2?P4, P1?P4 and P5?P6 were the most affected by water deficiency under Romana conditions.


Sign in / Sign up

Export Citation Format

Share Document