scholarly journals C-Partitioning in Sweet Cherry (Prunus avium L) During Early Spring

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 887C-887
Author(s):  
Marlene Ayala ◽  
Greg Lang*

In deciduous fruit trees, some storage reserves accumulate during fall and are used for early spring growth. In sweet cherry (Prunus avium L), stored reserves are critical for early growth and there is a transition phase during which current photoassimilates become the primary source for support of reproductive and vegetative sinks. As little is known about this transition, an experiment using 4-year-old `Regina' sweet cherry on the semidwarfing rootstock, Gisela 6, was established. Using whole canopy exposure chambers, five trees were pulsed with high levels of 13CO2 on three different dates during fall (Sept.-Oct). At leaf drop, leaves, buds, wood, bark and roots were sampled for GCMS analysis of pre-winter storage reserves. The major storage organs (those which had the highest change in isotopic ratios) were roots and wood in the trunk and branches. During spring, newly developing organs (flowers, fruits and young leaves) were sampled weekly from bloom to stage III of fruit development for additional GCMS analysis. The stored 13C was mobilized and partitioned to flowers, fruits and young leaves from early spring until one week after fruit set. The highest 13C levels in growing sinks were observed between bloom and fruit set. The isotopic composition of new organs did not differ initially (3 May). During the three next sampling dates (10-24 May) reproductive organs had higher 13C levels compared to vegetative growth. The role of storage reserves, as a source of assimilates for early spring growth and their implications for crop development, will be discussed.

2008 ◽  
Vol 30 (1) ◽  
pp. 154-158 ◽  
Author(s):  
Remedios Morales Corts ◽  
Luciano Cordeiro Rodrigues ◽  
Jesús Maria Ortíz Marcide ◽  
Rodrigo Pérez Sánches

Extracts from young leaves of nine sweet cherry (Prunus avium L.) and eight sour cherry (Prunus cerasus L.) varieties, located in the germplasm collection of the 'Direção Regional de Agricultura da Beira Interior' (Fundão, Portugal), were analysed for five isozyme systems in order to characterise these varieties and detect problems of synonymies and homonymies that frequently present. The sweet and sour cherry varieties analyzed showed low isoenzymatic polymorphism, being PGM and PGI the systems with the highest discrimination power. These systems presented seven and five different zymogrames, respectively. IDH showed four patterns. SKDH and 6-PGD grouped the varieties only into two patterns. The evident and discriminant restrictions of this type of analysis had got results that have only been a complement for agronomical and morphological characterization.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 603e-603
Author(s):  
K.G. Weis ◽  
S.M. Southwick ◽  
J.T. Yeager ◽  
W.W. Coates ◽  
Michael E. Rupert

The years 1995 and 1996 were low chill years in California with respect to stone fruit dormancy. Advancing reproductive budbreak and flowering was accomplished in `Bing' cherry (Prunus avium) by single-spray treatments of a surfactant {a polymeric alkoxylated fatty amine [N,N-bis 2-(omega-hydroxypolyoxyethylene/polyoxypropylene) ethyl alkylamine]} and potassium nitrate in combination when applied at “tightbud,” ≈ 42 days (1 Feb. 1995) before full bloom and with surfactant and potassium nitrate in combination when 10% green calyx was apparent, 33 days before full bloom. Applying 2% surfactant (v/v) + 6% potassium nitrate (w/v) was most effective in advancing bloom, speeding progression through bloom, and advancing fruit maturity when applied at tightbud stage. Surfactant (2% or 4%) applied with 25% or 35% calcium nitrate (w/v) on 2 Feb. 1996 significantly advanced full bloom compared to nontreated controls. Fruit maturity (1995) was somewhat advanced by surfactant–nitrate treatments, but fruit set and final fruit weight were equivalent among treatments. No phytotoxicity was noted in foliage or fruit. In California, marginal and insufficient winter chilling often causes irregular, extended, or delayed bloom periods, resulting in poor bloom-overlap with pollenizers. As a result, flower and fruit development may be so variable as to have small, green and ripe fruit on the same tree, making harvest more time consuming and costly. Data indicate that this surfactant, in combination with a nitrogenous compound, has potential to advance reproductive budbreak and advance maturity in sweet cherry without reducing fruit set or fruit size. Advancing the ripening time of sweet cherry even 2 to 3 days can increase the price received per 8.2-kg box by $10 to $20.


Genetika ◽  
2013 ◽  
Vol 45 (3) ◽  
pp. 939-952 ◽  
Author(s):  
Sanja Radicevic ◽  
Sladjana Maric ◽  
Radosav Cerovic ◽  
Milena Djordjevic

The paper presents results of a three-year study of self-(in)compatibility in four economically important sweet cherry genotypes - ?Karina?, ?Kordia?, ?Regina? and ?Summit?, under agro-environmental conditions of Western Serbia. Determination of S-RNase genotype, microscopic observation of the pollen tube growth rate and assaying of the fruit set level after self-pollination were used to assess the genotypes. ?Kordia? (S3S6), ?Regina? (S1S3) and ?Summit? (S1S2) are self-incompatible genotypes, with a considerable number of pollen tubes ending the growth in the middle third of the style and lack of fruit set. ?Karina?, as S3S4 genotype, behaved as self-compatible, since its pollen tubes reached the base of the style and ovary, penetrating the nucellus. In addition, fruit set for ?Karina? was recorded in all three years of study (40.26%, 18.79% and 21.81%, respectively).


HortScience ◽  
2021 ◽  
pp. 1-10
Author(s):  
Irfan Ali Sabir ◽  
Xunju Liu ◽  
Songtao Jiu ◽  
Matthew Whiting ◽  
Caixi Zhang

Sweet cherry (Prunus avium L.) is a valuable fruit crop worldwide. Farmers’ incomes are closely related to fruit quantity and quality, yet these can be highly variable across years. As part of a broader project for optimizing fruit set and fruit quality in sweet cherries, this study was conducted to evaluate the potential of various plant growth regulators (PGRs) for improving fruit set and fruit quality. Cytokinins, gibberellins, auxin, and polyamines were used as treatments. Treatments were applied as foliar sprays at full bloom to ‘Bing’ and three low-productivity genotypes, ‘Regina’, ‘Tieton’, and ‘PC8011-3’. We assessed the fruit set, fruit quality, and return bloom from each treatment. 4-chlorophenoxyacetic acid (4-CPA) increased fruit set by 53% and 36% in ‘Bing’ and ‘Tieton’, respectively. The combination of gibberellin (GA)3 + GA4/7 was more effective for improving fruit set than other isomers of gibberellin alone. Cytokinin treatments had slight adverse effects or no effect on fruit set except for CPPU. In ‘PC8011-3’, both N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) and 4-CPA enhanced fruit set by ≈81% and 100% compared with untreated control. The response of cherry trees to polyamine sprays depended on the properties of the cultivars and the treatment concentration. Foliar application of GA3, GA4/7, or N-phenyl-N'-(1, 2, 3-thiadiazol-5-yl) urea (TDZ) in ‘Bing’ trees has negative effects on return bloom, whereas GA1 can increase the yield and flower buds. These results suggest that PGRs may have varied effects on sweet cherry fruit set and that more work is needed to develop practical programs for improving yield security.


2019 ◽  
Vol 18 (2) ◽  
pp. 139-142
Author(s):  
Akira Tomita ◽  
Eiki Hagihara ◽  
Michiko Dobashi-Yamashita ◽  
Masashi Ida ◽  
Shuji Ohno
Keyword(s):  

HortScience ◽  
1994 ◽  
Vol 29 (6) ◽  
pp. 611-612 ◽  
Author(s):  
Frank Kappel ◽  
Jean Lichou

The effect of rootstock on the flowering and fruiting response of sweet cherries (Prunus avium L.) was investigated using 4-year-old branch units. The cherry rootstock Edabriz (Prunus cerasus L.) affected the flowering and fruiting response of `Burlat' sweet cherry compared to Maxma 14 and F12/1. Branches of trees on Edabriz had more flowers, more flowers per spur, more spurs, more fruit, higher yields, smaller fruit, and a reduced fruit set compared to the standard rootstock, F12/1. One-year-old branch sections had more flowers and fruit, higher fruit weight, and heavier fruit size compared to older branch portions.


1984 ◽  
Vol 64 (1) ◽  
pp. 211-214 ◽  
Author(s):  
W. DAVID LANE ◽  
HANS SCHMID

Lapins and Sunburst are new self-compatible, dark fleshed sweet cherry cultivars named by Agriculture Canada Research Station, Summerland, British Columbia. Lapins matures late in the cherry season and has outstanding split resistance combined with other desirable fruit and tree characteristics. Testing to date has shown it to be better than presently grown cultivars. Sunburst is an early cultivar ripening in Bing season and is outstanding because of very large fruit size and very heavy yields. It should be a suitable cultivar in locations where fruit set is a problem and lengthy storage is not required.Key words: Prunus avium, self-compatible, split resistance, cultivar description


2007 ◽  
Vol 13 (3) ◽  
Author(s):  
S. Thurzó ◽  
M. Grandi ◽  
L. Lagezza ◽  
S. Lugli ◽  
I. J. Holb ◽  
...  

In this study, the pollen of 14 sweet cherry cultivars (‘Anella’, ‘Duroni 3', 'Badacsony', 'Cristalina', 'Ferbolus', 'Ferrovia', 'Georgia', 'Hudson', 'Kordia', 'Sam', 'Schneiders’, ‘Spate’, ‘Knorpelkirsche', 'Skeena', 'Summit', 'Sylvia') was used to fertilize the emasculated flowers of sweet cherry cv. 'Regina'. Fruit set was assessed three times during fruit development: 14 May, 30 May and 27 May 2007. We observed full incompatibility among the 14 cultivars for cv. 'Cristalina', which is in the same S-allele group as cv. 'Regina'. After analysis of our data, we have results about fertilization efficiency of the cultivars. Most of the evaluated cultivars are inadequate to fertilize cv. 'Regina' to a sufficient degree. There were two exceptions, cv. 'Sam' and cv. 'Skeena', where percentage of ripened fruits was above 20%. These two cultivars can guarantee such a pollination, which ensures ample quantity of ripened fruits. Results of this study have proved three other cultivars to be quite good pollinators for cv. 'Regina'. In conclusion, ideal pollinators for cv. 'Regina' could be — apart from above-mentioned two cultivars, 'Sam' and 'Skeena' — cvs. 'Sylvia' and 'Bianca', which was suggested by more literature sources.


HortScience ◽  
2004 ◽  
Vol 39 (7) ◽  
pp. 1716-1721 ◽  
Author(s):  
Gerry Neilsen ◽  
Frank Kappel ◽  
Denise Neilsen

`Lapins' sweet cherry (Prunus avium L.) trees on Gisela 5 (Prunus cerasus × Prunus cansecens) rootstock were maintained for the first four growing seasons with eight different fertigation treatments. Treatments involved N application at low (42 mg·L-1), medium (84 mg·L-1), and high (168 mg·L-1) concentrations via sprinkler-fertigation of Ca(NO3)2 each year about 8 weeks after bloom. The medium N treatment was also applied with P fertigation in early spring or with K fertigation in June. Nitrogen was also broadcast in early spring at 75 kg·ha-1 or followed with medium N sprinkler-fertigated postharvest in August. As a final treatment the medium root zone N concentration was maintained for 8 weeks postbloom via drip fertigation. Throughout the study, irrigation was scheduled to meet evaporative demand based on an electronic atmometer. Drip fertigation, which wet a smaller portion of the orchard floor, considerably reduced per-tree water applications. Tree vigor and pruning weights were reduced for drip-fertigated as compared to sprinkler-fertigated trees although cumulative yield was not significantly different during the study. Fruit size, however, was smaller for this treatment when crop load was at a maximum at year 4. Future research is warranted to insure fruit size can be maintained for heavily cropping drip-fertigated trees. Leaf and fruit N increased linearly as N concentration of sprinkler-fertigating solution increased from low to high values. Optimum yield and highest fruit quality were associated with the medium N treatment. Sprinkler fertigation of P and K did not increase leaf and fruit concentration of either nutrient or meaningfully affect tree performance.


Sign in / Sign up

Export Citation Format

Share Document