scholarly journals DIFFERENTIAL PURPLE NUTSEDGE (Cyperus rotundus) PENETRATION THROUGH MULCH FILMS

HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 889c-889
Author(s):  
Bielinski M. Santos ◽  
James P. Gilreath

Purple nutsedge can easily penetrate polyethylene mulch films. However, there are no reports on possible differences among mulch films. Because of this situation, field trials were conducted in Ruskin and Bradenton, Fla., during 2002 and 2003. In Spring 2002, the treatments were a) no mulch, b) black Pliant High Barrier mulch, and c) green Klerk's Virtually Impermeable Film (VIF). In Spring 2002, the films were a) black Pliant High Barrier, b) black IPM Bromostop, c) metallized Pliant, and d) green Klerk's VIF. The number of nutsedge emerged through the films was determined. No fumigants or herbicides were applied. Results indicated that the Klerk's VIF had the lowest nutsedge densities. No nutsedge control differences were found between the IPM Bromostop and the metallized Pliant films. These differences might be due to the physical properties of the films, including stretching and thickness.

2006 ◽  
Vol 16 (4) ◽  
pp. 637-640 ◽  
Author(s):  
Bielinski M. Santos ◽  
James P. Gilreath ◽  
Timothy N. Motis ◽  
Marcel von Hulten ◽  
Myriam N. Siham

Field trials were conducted to: 1) determine the effect of mulch types and applied concentrations of 1,3-dichloropropene + chloropicrin (1,3-D + Pic) on fumigant retention; and 2) examine the influence of mulch films and 1,3-D + Pic concentrations on purple nutsedge (Cyperus rotundus) control. 1,3-D + Pic concentrations were 0, 600, 1000, and 1400 ppm, and mulch types were white on black high-density polyethylene mulch (HDPE), white on black virtually impermeable film (VIF-WB), silver on white metalized mulch, and green VIF (VIF-G). Regardless of the initial 1,3-D + Pic concentrations and mulch types, fumigant retention exponentially decreased over time. When 1400 ppm of 1,3-D + Pic were injected into the soil, 1,3-D + Pic dissipation reached 200 ppm at 3.2, 2.9, 2.2, and 1.5 days after treatment (DAT) under VIF-G, VIF-WB, metalized, and HDPE mulches, respectively. At 5 weeks after treatment (WAT), HDPE mulch had the highest purple nutsedge densities among all films. The treatments covered with VIF-G had purple nutsedge densities <5 plants/ft2, regardless of the applied fumigant concentration, while VIF-WB and metalized mulch reached this weed density with 696 ppm of the fumigant. In contrast, 1186 ppm of 1,3-D + Pic were needed to reach this weed density with HDPE mulch. Correlation analysis showed that mulch fumigant retention readings at 3 DAT effectively predict purple nutsedge densities at 5 WAT (r ≤ –0.94). These findings proved that 1,3-D + Pic activity on purple nutsedge can be improved with the use of more retentive films, which cause longer fumigant retention, thus improving efficacy. Growers might elect reducing 1,3-D + Pic rates to compensate for the relatively higher cost of fumigant-retentive mulches, without losing herbicidal activity.


2004 ◽  
Vol 18 (2) ◽  
pp. 341-345 ◽  
Author(s):  
James P. Gilreath ◽  
Bielinski M. Santos

Field trials were conducted to compare the effect of various soil fumigants along with in-bed pebulate and row-middle metribuzin applications on purple nutsedge control and on tomato and bell pepper growth and yield. Treatments consisted of combinations of soil fumigants, pebulate, and metribuzin. Fumigants levels were (1) untreated control, (2) methyl bromide (MBr) + chloropicrin (Pic) (67 + 33%, respectively), (3) Pic, (4) metham, (5) dazomet, and (6) 1,3-dichloropropene (1,3-D) + Pic (83 + 17%, respectively). Pebulate levels were either applied in-bed or not applied. Row middles were either sprayed with metribuzin or untreated. In both crops, purple nutsedge populations were independently influenced by fumigants and pebulate applications, with the highest number of purple nutsedge plants in the untreated control. The addition of pebulate reduced purple nutsedge populations in all treatments. In tomato trials, the yield was affected by fumigants, with the highest losses (53 and 50% reductions in fruit number and weight) observed in the nonfumigated control. In pepper trials, fruit number and weight were individually influenced by fumigants and metribuzin sprayings. Application of metribuzin to row middles increased yields 10% relative to nontreated plots.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 431C-431 ◽  
Author(s):  
J.P. Morales-Payan ◽  
W.M. Stall ◽  
D.G. Shilling ◽  
J.A. Dusky ◽  
T.A. Bewick

Field trials were conducted in Gainesville, Fla., to determine the influence of nitrogen fertilization on the interference effect of purple or yellow nutsedge on the yield of fresh tomato. Nitrogen (N) rates of 50, 100, 150, 200, 250, 300, and 350 kg·ha–1 were applied broadcast to the soil. Before transplanting, 1-m-wide soil beds were covered with plastic and fumigated with methyl bromide to suppress the growth on undesired weeds. Nutsedge-free and purple or yellow nutsedge-infested tomato plots were separately established. `Solar Set' tomatoes were transplanted in the middle of the soil beds, 50 cm apart in a single row. In nutsedge-infested plots, weed densities known to cause significant yield reduction in tomato (100 purple nutsedge plants/m2 and 50 yellow nutsedge plants/m2) were uniformly established perforating the plastic and transplanting viable tubers in the perforations. Purple and yellow nutsedge tubers were transplanted the same day as tomatoes and were allowed to interfere during the whole crop season. Results indicate that N rates had a significant effect on tomato fruit yield in both nutsedge-free and nutsedge-infested treatments. The presence of either purple or yellow nutsedge significantly reduced the fruit yield of tomato at all N rates. As N rates increased, tomato fruit yield reduction caused by the interference of either nutsedge species also increased. When yellow nutsedge was allowed to interfere with tomato, fruit yield loss was as low as 18% at 50 kg N/ha and as high as 42% at 350 kg N/ha. In purple nutsedge-infested tomato, fruit yield reductions ranged from 10% at 50 kg N/ha to 27% at 350 kg N/ha. N effects on nutsedge-free and nutsedge-infested tomato yields were described by quadratic equations, with maximum tomato fruit yield values being reached between 200 and 250 kg N/ha in both nutsedge-free and nutsedge-infested treatments.


2005 ◽  
Vol 19 (3) ◽  
pp. 575-579 ◽  
Author(s):  
James P. Gilreath ◽  
Bielinski M. Santos

Field trials were conducted to determine the effect of fumigant-pebulate combinations on purple nutsedge density in fresh market tomato. Treatments consisted of methyl bromide plus chloropicrin (MBr plus Pic) [67:33] at rates of 270 and 130 kg/ha, respectively; Pic plus pebulate at 400 and 4.5 kg/ha, respectively; metham (MNa) plus pebulate at 485 and 4.5 kg/ha, respectively; dazomet plus pebulate at 950 and 4.5 kg/ha, respectively; and 1,3-dicholopropene plus Pic (C-17) [87:13] plus pebulate at 392 and 4.5 kg/ha, respectively. At 12 wk after treatment, MBr plus Pic controlled purple nutsedge more effectively (10 plants/m2) than the fumigant-pebulate combinations (50 to 70 plants/m2). Compared to MBr plus Pic, Pic plus pebulate had a 14% lower marketable yield. No differences in marketable yield were noted with dazomet plus pebulate or C-17 plus pebulate compared to MBr plus Pic. However, MNa plus pebulate produced a 15% higher yield than MBr plus Pic. Additionally, MNa plus pebulate had 15% higher marketable fruit weight than MBr plus Pic.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 889b-889
Author(s):  
Bielinski M. Santos ◽  
James P. Gilreath ◽  
Camille Esmel ◽  
Myriam N. Siham

Field trials were conducted in Bradenton, Fla., to determine the effect of purple and yellow nutsedge (Cyperus rotundus and C. esculentum) time of emergence on the area of influence of each weed on bell pepper (Capsicum annuum). Each weed-bell pepper complex was studied separately. A single weed was transplanted 1, 2, 3, 4, and 5 weeks after bell pepper transplanting (WAT) and bell pepper yield was collected at 0, 30, 60, and 90 cm from each weed. Bell pepper yield data indicated that yellow nutsedge was more aggressive than purple nutsedge interfering with bell pepper. When yellow nutsedge emerged 1 WAT, bell pepper yield losses were between 32 and 57% for plants at 0 and 30 cm away from the weed, respectively, which represents at least a density of approximately 3.5 plants/m2. For purple nutsedge, one weed growing since 1 WAT between two bell pepper plants (0 cm; 10 plants/m2) produced a yield reduction of 31%. These results indicated that low nutsedge densities, which are commonly believed to be unimportant, can cause significant bell pepper yield reductions.


Weed Science ◽  
1971 ◽  
Vol 19 (6) ◽  
pp. 701-705 ◽  
Author(s):  
R. J. Burr ◽  
G. F. Warren

Several herbicides were tested in the greenhouse on ivyleaf morningglory (Ipomoea hederacea(L.) Jacq.), green foxtail (Setaria viridis(L.) Beauv.), purple nutsedge (Cyperus rotundusL.), and quackgrass (Agropyron repens(L.) Beauv.) to determine the degree of enhancement in activity that could be obtained with an isoparaffinic oil carrier applied at 140 L/ha. The enhancement varied with the herbicide and with the species, ranging from 16-fold enhancement with 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine) and 2-sec-butyl-4,6-dinitrophenol (dinoseb) on ivyleaf morningglory to no enhancement of atrazine activity on purple nutsedge and quackgrass or (2,4-dichlorophenoxy)acetic acid (2,4-D) activity on quackgrass and ivyleaf morningglory. An oil adjuvant was less effective in enhancing dinoseb and 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea (linuron) activity than was the isoparaffinic oil carrier. Also, the isoparaffinic oil carrier emulsified in water was less effective than the undiluted oil in enhancing dinoseb activity on green foxtail, even though equal volumes of the isoparaffinic oil were applied.


2000 ◽  
Vol 14 (1) ◽  
pp. 1-6 ◽  
Author(s):  
JUGAH B. KADIR ◽  
R. CHARUDATTAN ◽  
WILLIAM M. STALL ◽  
BARRY J. BRECKE

2015 ◽  
Vol 33 (2) ◽  
pp. 165-173 ◽  
Author(s):  
R.S.O. Lima ◽  
E.C.R. Machado ◽  
A.P.P. Silva ◽  
B.S. Marques ◽  
M.F. Gonçalves ◽  
...  

This work was carried out with the objective of elaborating mathematical models to predict growth and development of purple nutsedge (Cyperus rotundus) based on days or accumulated thermal units (growing degree days). Thus, two independent trials were developed, the first with a decreasing photoperiod (March to July) and the second with an increasing photoperiod (August to November). In each trial, ten assessments of plant growth and development were performed, quantifying total dry matter and the species phenology. After that, phenology was fit to first degree equations, considering individual trials or their grouping. In the same way, the total dry matter was fit to logistic-type models. In all regressions four temporal scales possibilities were assessed for the x axis: accumulated days or growing degree days (GDD) with base temperatures (Tb) of 10, 12 and 15 oC. For both photoperiod conditions, growth and development of purple nutsedge were adequately fit to prediction mathematical models based on accumulated thermal units, highlighting Tb = 12 oC. Considering GDD calculated with Tb = 12 oC, purple nutsedge phenology may be predicted by y = 0.113x, while species growth may be predicted by y = 37.678/(1+(x/509.353)-7.047).


Plant Disease ◽  
2019 ◽  
Vol 103 (11) ◽  
pp. 2764-2770 ◽  
Author(s):  
Jialin Yu ◽  
Gary E. Vallad ◽  
Nathan S. Boyd

Fusarium wilt (Fusarium oxysporum f. sp. lycopersici), root-knot nematodes (Meloidogyne spp.), and purple nutsedge (Cyperus rotundus L.) are among the most damaging soilborne pests for tomato (Lycopersicon esculentum Mill.) production in the southeastern United States. Allyl isothiocyanate (allyl ITC) was evaluated as a potential fumigant alternative for control of soilborne pathogens, nematodes, and weeds. Shank- or drip-injected allyl ITC at rates ranging from 221 to 367 kg ha−1 exhibited excellent performance, reducing the recovery of total F. oxysporum from treated soils. Shank- or drip-injected allyl ITC at 367 kg ha−1 provided equivalent control of C. rotundus compared with 1,3-dichloropropene + chloropicrin and metam potassium, respectively. Totally impermeable film (TIF) did not further reduce the recovery of F. oxysporum and various nematodes from soil treated with allyl ITC compared with virtually impermeable film (VIF). However, TIF mulch significantly improved C. rotundus control versus shank- or drip-injected allyl ITC treatments under VIF mulch. Overall, allyl ITC is an effective methyl bromide alternative against F. oxysporum, C. rotundus, and plant-parasitic nematodes Criconemella spp. and Hoplolaimus spp. in plasticulture tomato production.


Sign in / Sign up

Export Citation Format

Share Document