scholarly journals Citrus Bioactive Limonoid Extraction using Environment-friendly Hydrotropy

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1008C-1008
Author(s):  
Deepak Dandekar ◽  
G. K. Jayaprakasha ◽  
Bhimanagouda Patil

Citrus consumption has been shown to promote human health due to presence of several bioactive compounds. In the process of understanding the health benefits of citrus, we need to isolate and characterize these compounds. Limonoids are one of such prominent, but lesser-known phytonutrients that have been shown to prevent cancers of the mouth, skin, lung, breast, and colon. With the growing interest in the health-promoting properties of citrus limonoids, the demand for these bioactives has significantly increased. It has been critical to explore environment-friendly extraction methods rather than using hazardous organic solvents. A water-based hydrotropic extraction of limonoid aglycones from sour orange (Citrus aurantium L.) seeds was developed. Two hydrotropes, sodium salicylate (Na-Sal) and sodium cumene sulfonate (Na-CuS), were studied for extraction efficiency using the Box Behnken experiment design method. The extraction efficiency of prominent aglycone limonin was observed depending on hydrotrope concentration, extraction temperature, and percentage of raw material loading. Response Surface Analysis (RSA) of data predicted the optimum conditions for maximum yield. Recovery of aglycones from filtered extract is also easily achieved by mere dilution using water at pH 3 or 7 or by partitioning the extract with dichloromethane. At optimum conditions, limonin yield of 0.46 mg/g seeds in the case of Na-Sal extraction and 0.65 mg/g seeds in the case of Na-CuS extraction was achieved. The results demonstrated that the hydrotropic extraction process of limonoid aglycones has practical commercial importance. This project is based upon work supported by the USDA–CSREES IFAFS #2001 52102 02294 and USDA–CSREES #2005-34402-14401 “Designing Foods for Health” through the Vegetable and Fruit Improvement Center.

Author(s):  
Wahbi Kalook ◽  
Adib Faleh ◽  
Amir Al-Haj Sakur ◽  
Wassim Abdelwahed

The aim of this research is to extract carotenoids from apricot fruits using a food solvent (ethanol) and a non-food solvent (propanol). In addition, it aims to study the effect of different extraction conditions, i.e., the extraction temperature (20-40-60)°C and the extraction times (4-8-12) hours, on the carotenoids yield in order to improve and develop extraction methods. The extracted carotenoids were determined using high-performance liquid chromatography (HPLC), and the studied carotenoids are α-carotene and β-carotene. It was found that β-carotene constitutes about 80% of the total carotenoids in apricots. The results indicated that the extraction yield using ethanol was low compared to the extraction yield using propanol. Propanol is the most suitable solvent for carotenoids extraction in comparison with ethanol. The temperature also had a significant effect on the extraction yield; at 20°C the extraction yield was very low, and 60°C was the optimum temperature for the extraction of carotene. The extraction yield significantly increased with time in the first hours of extraction, and there was no significant effect from increasing the extraction time for a period of 6-8 hours. Moreover, the pretreatment of fruits by freezing accelerated the extraction process and increased the extraction yield. The optimum conditions for extracting carotenoids were determined in the conditions of food extraction; the optimum conditions for extracting carotenoids are: extraction at 60°C for three hours with pretreatment by freezing as the extraction rate reached up to 6.36 mg/100 g using ethanol as a food solvent.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
K. Gafurov ◽  
B. Muhammadiev ◽  
Sh. Mirzaeva ◽  
F. Kuldosheva

The unique properties of supercritical carbon dioxide as a solvent are widely used for extraction. In supercritical media, the dissolution of molecules of various chemical nature is possible. The purpose of this investigation was to study the extraction process and obtain extracts from valuable regional plant materials by applying CO2 extraction under pre- and supercritical conditions. The objects of research were: ground seeds of melon, pumpkin and licorice roots, as well as mint leaves, mulberry and jida flowers. For extraction, a laboratory setup was used that allows extraction when the CO2 is supplied by a high-pressure plunger pump in the sub- and supercritical state using a heat pump. The pressure range is 3-15 MPa, temperatures 295–330 K, and the volumetric flow rate above the critical CO2 is 800–900 g. Experiments with ground seeds of melon and pumpkin showed that as a result of 4 sequentially performed extraction cycles on a single load with supercritical CO2 parameters ( 315–330 K; 3–7.5 MPa) the decrease in the mass of melon seeds was 90 g (pumpkins 80 g). During the total extraction time (2.5 hours), 20 kg of CO2 were pumped through the reactor (25 l at 290 K and 6.8 MPa), while the average oil content in the extract was 4 g per 1 kg of CO2 (3.0 g per 1 l of SС-CO2) In experiments with jida flowers, the maximum amount of solid extractable substance (2% by weight of the raw material) was obtained at a temperature in the extractor of 308 K and a pressure of 7.5 MPa. Upon extraction under critical conditions in collection 2, the liquid phase was absent; only a yellow-green paste was released in it. According to the results of experiments with mint leaves, the maximum yield of a greenish liquid was observed at T = 315 K and P = 4 MPa., Mulberry - at T = 306 K and P = 6.0 MPa. The results of the extraction of oils and extracts from ground seeds of melon, pumpkin and licorice roots, as well as mint leaves, mulberries and jida flowers confirm that the maximum yield of the extracted substance is achieved with supercritical CO2 parameters in the extractor (310 K, 7.5 MPa). When liquid CO2 is extracted (300 K and 6-8 MPa), up to 2% of a yellow substance is extracted, which does not differ in appearance from a supercritical extract.


2019 ◽  
Vol 48 (4) ◽  
pp. 301-308 ◽  
Author(s):  
Sawinder Kaur ◽  
Paramjit S. Panesar ◽  
Sushma Gurumayum ◽  
Prasad Rasane ◽  
Vikas Kumar

Purpose The extraction of bioactive compounds such as pigments from natural sources, using different solvents, is a vital downstream process. The present study aims to investigate the effect of different variables, namely, extraction temperature, mass of fermented rice and time on the extraction process of orevactaene and flavanoid pigment from Epicoccum nigrum fermented broken rice. Design/methodology/approach Central composite rotatable design under response surface methodology was used for deducing optimized conditions. The pigments were extracted under conditions of extraction temperature (40-70°C), mass of fermented rice (0.5-1.5 g) and time (30-90 min), using water as the extraction media. The experimental data obtained were studied by analysis of variance. Data were fitted to a second-order polynomial equation using multiple regression analysis. Findings The optimum conditions generated by the software for aqueous extraction process, i.e. extraction temperature of 55.7°C, 0.79 g of fermented matter and extraction time of 56.6 min, resulted in a pigment yield of 52.7AU/g orevactaene and 77.2 AU/g flavanoid. Research limitations/implications The developed polynomial empirical model for the optimal recovery of the orevactaene and flavanoid pigments could be used for further studies in prediction of yield under specified variable conditions. Practical implications The response surface methodology helped in optimizng the conditions for the eco-friendly low-cost aqueous extarction process for orevactaene and flavanoid pigments, produced by Epicoccum nigrum during solid state fermentation of broken rice. This optimization can provide the basis for scaling up for industrial extraction process. Originality/value This paper focuses on optimizing the extraction conditions to get the maximum yield of orevactaene and flavanoid pigments, using water as the extracting media. No literature is available on the optimization of the extraction process of Epicoccum nigrum pigments, to the best of the authors’ knowledge.


Technologies ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 45
Author(s):  
Marilena Radoiu ◽  
Harmandeep Kaur ◽  
Anna Bakowska-Barczak ◽  
Steven Splinter

Cannabis is a flowering plant that has long been used for medicinal, therapeutic, and recreational purposes. Cannabis contains more than 500 different compounds, including a unique class of terpeno-phenolic compounds known as cannabinoids. Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most extensively studied cannabinoids. They have been associated with the therapeutic and medicinal properties of the cannabis plant and also with its popularity as a recreational drug. In this paper, an industrial method for cannabis extraction using 915 MHz microwaves coupled with continuous flow operation is presented. The main advantages of the microwave-assisted extraction (MAE) are associated to the continuous-flow operation at atmospheric pressure which allows for higher volumes of biomass to be processed in less time than existing extraction methods, with improved extraction efficiency leading to increased final product yields, improved extract consistency and quality because the process does not require stopping and restarting material flows, and ease of scale-up to industrial scale without the use of pressurised batch vessels. Moreover, due to the flexibility of changing the operation conditions, MAE eliminates additional steps required in most extraction methods, such as biomass decarboxylation or winterisation, which typically adds at least a half day to the extraction process. Another factor that sets MAE apart is the ability to achieve high extraction efficiency, i.e., up to 95% of the active compounds from cannabis biomass can be recovered at industrial scale.


Author(s):  
Marilena Radoiu ◽  
Harmandeep Kaur ◽  
Anna Bakowska-Barczak ◽  
Steven Splinter

Cannabis is a flowering plant that has long been used for medicinal, therapeutic, and recreational purposes. Cannabis contains more than 500 different compounds, including a unique class of terpeno-phenolic compounds known as cannabinoids; Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most prevalent cannabinoids and have been associated with the therapeutic and medicinal properties of the cannabis plant. In this paper, continuous flow microwave assisted extraction (MAE) is presented and compared with other methods for commercial cannabis extraction. The practical issues of each extraction method are discussed. The main advantages of MAE are: continuous-flow method which allows for higher volumes of biomass to be processed in less time than existing extraction methods, improved extraction efficiency leading to increased final product yields, improved extract consistency and quality because the process does not require stopping and restarting material flows, and ease of scale-up to industrial scale without the use of pressurised batch vessels. Moreover, due to the flexibility of changing the operation conditions, MAE eliminates additional steps required in most extraction methods, such as biomass decarboxylation, winterisation, which typically adds at least a half day to the extraction process. Another factor that sets MAE apart is the ability to achieve high extraction efficiency even at the industrial scale. Whereas the typical recovery of active compounds using supercritical CO¬2 remains around 70-80%, via MAE up to 95% of the active compounds from cannabis biomass can be recovered at the industrial scale.


EKSPLORIUM ◽  
2019 ◽  
Vol 39 (2) ◽  
pp. 105
Author(s):  
Tri Handini ◽  
I Made Sukarna ◽  
Anisa Dwi Yuniyanti

ABSTRAK Telah dilakukan proses pemisahan itrium dengan cara ekstraksi menggunakan solven TOPO. Tujuan dari penelitian ini adalah untuk mengetahui kondisi optimum pengaruh variasi konsentrasi ekstraktan, waktu pengadukan, dan keasaman umpan logam tanah jarang serta mengetahui koefisien distribusi (Kd), faktor pisah (FP), dan efisiensi ekstraksi (%), dengan metode ekstraksi cair-cair. Umpan yang digunakan adalah logam tanah jarang dari pasir senotim. Ekstraktan yang digunakan dalam penelitian adalah TOPO (tri-n-oktilfosfina oksida). Kadar itrium (Y), disprosium (Dy), dan gadolinium (Gd) ditentukan menggunakan spektrometer pendar sinar-X. Kondisi optimum yang diperoleh dari penelitian proses ekstraksi ini meliputi: konsentrasi ekstraktan 20% TOPO dalam kerosin, waktu pengadukan 15 menit, keasaman umpan 0,5 M. Nilai koefisien distribusi yang diperoleh Y = 5,61; Dy = 2,06; Gd = 0,99. Efisiensi ekstraksi Y = 85,13%, Dy = 67,80%, Gd = 50,17% sedangkan faktor pisah Y-Dy = 2,7186 dan Y-Gd = 5,6861. ABSTRACT Separation process of yttrium by extraction using TOPO solvents has been done. The purpose of this study is to  find out the optimum condition of the variation effect of extractant concentration, stirring time, and acidity of the rare earth feed and to determine the distribution coefficient, separation factor, and extraction efficiency (%), using the liquid-liquid extraction method. The feed used  were rare earth  elements of xenotime sand. The extractant used in the research were TOPO (tri-n-octylphosphine oxide). Concentration of yttrium (Y), disprosium (Dy), and gadolinium (Gd) were  determined using X-ray fluorescene spectrometer. Optimum conditions of the extraction process obtained from this study were: TOPO extractant concentration in kerosene 20%, stirring time 15 minutes, acidity of feed 0.5 M. Obtained value of distribution coefficient  Y = 5.61; Dy = 2.06; Gd = 0.99. For extraction efficiency Y = 85.13%, Dy = 67.80%, Gd = 50.17% whereas separation factor Y-Dy = 2.7186 and Y-Gd = 5.6861.


Beverages ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 59
Author(s):  
Aggeliki Alibante ◽  
Achillia Lakka ◽  
Eleni Bozinou ◽  
Arhontoula Chatzilazarou ◽  
Stavros Lalas ◽  
...  

Winemaking is a process that generates a large volume of solid waste biomass, which is currently under extensive investigation as a bioresource of precious polyphenolic compounds. These substances are retrieved from vinification side streams principally by deploying solid–liquid extraction methods. In this frame, the present investigation had as objective the development of an alternative, green extraction process for polyphenols, through integration of ultrasonication as a pretreatment stage, and subsequent extraction with aqueous β-cyclodextrin. Polyphenol recovery from red grape pomace (RGP) was shown to be significantly enhanced by ultrasonication pretreatment, and the use of β-cyclodextrin effectively boosted the aqueous extraction. Under optimized conditions, established by response surface methodology, the maximum yield in total polyphenols was 57.47 mg GAE g−1 dm, at 80 °C, requiring a barrier of 10.95 kJ mol−1. The extract produced was significantly enriched in catechin and quercetin, compared to the aqueous extract, exhibiting also increased antiradical activity. These findings highlighted the value of the process developed for targeted recovery of certain polyphenols and the preparation of task-specific extracts.


2013 ◽  
Vol 781-784 ◽  
pp. 1886-1890
Author(s):  
Fei Long Sun ◽  
Zhang Peng Li ◽  
Ting Li ◽  
Yong Fan ◽  
Yan Chu ◽  
...  

Natural pigments have raised a growing interest due to their extensive range of colors, innocuous and beneficial health effects. In this paper, the extraction process and stability of strawberry red pigment were studied. An orthogonal test [L16(4)4] was applied to get the best extraction conditions. Results showed that the optimum conditions were that the extraction temperature was 65C, the solid-liquid ratio was 1:5 (g/mL), the ratio of 1.5mol/L hydrochloride to 97.5% ethanol was 3:17 (mL/mL), and the extraction time was 4.5 hours. The effects of heat treatment, oxidant, sugar and preservatives on the stability of strawberry red pigment were also discussed. The stability of strawberry red pigment was found to be affected by high temperature, hydrogen peroxide, and potassium sorbate. This study is expected to provide a basis for further research, development, and utilization of strawberry red pigment.


2021 ◽  
Vol 19 (1) ◽  
pp. 830-842
Author(s):  
Quoc Toan Tran ◽  
The Dan Pham ◽  
Thanh Duong Nguyen ◽  
Van Huyen Luu ◽  
Huu Nghi Do ◽  
...  

Abstract Glycosmis stenocarpa is a species of shrub found in the Northern provinces of Vietnam. Its roots contain different carbazolic derivatives, mainly Murrayafoline A (Mu-A), which exhibits valuable biological activities. In this study, we performed an extraction of Mu-A from the roots of G. stenocarpa and optimized this process using response surface methodology (RSM) according to a central composite design, with three independent parameters including extraction time (min), extraction temperature (°C), and solvent/material ratio (mL/g). Two dependent variables were the Mu-A content (mg/g raw materials) and extraction efficiency (%). The optimal conditions to extract Mu-A were found to be as follows: extraction temperature, 67°C; extraction time, 165 min; and solvent/material ratio, 5:1. Under these conditions, the Mu-A content and extraction efficiency were 38.94 ± 1.31 mg/g raw materials and 34.98 ± 1.18%, respectively. Mu-A exhibited antiproliferation and antitumor-promoting activity against the HepG-2 cell line. The present optimization work of Mu-A extraction from G. stenocarpa roots contributed to the attempt of designing a large-scale extraction process for the compound and further exploitation of its potential in vivo applications.


2011 ◽  
Vol 140 ◽  
pp. 385-393 ◽  
Author(s):  
Xian Feng Shi ◽  
Yuan Xu ◽  
Yu Hua Li ◽  
Hong Xia Zeng ◽  
Yu Hong Sun

The extraction processing of lycopene from watermelon was investigated in this paper. Based on single factor experiments, response surface methodology (RSM) was adopted to study the key parameters such as number of extraction, extraction temperature, extraction time in order to increase extraction rate of lycopene. A second order quadratic equation was established and the applicability of model and interaction involved factors on predicting the lycopene extracting content was verified. The results indicated that the optimum extraction conditions were hexane (containing 2% dichloromethane) as extraction solvent, ratio of solvent to raw material of 3:1 (mL/g), number of extraction of 2, extraction time of 1.9 h and extraction temperature of 29.8°C. Under these conditions the extracting content of lycopene was 14.71±0.22 mg/kg, which is well in agreement with value predicted by the model.


Sign in / Sign up

Export Citation Format

Share Document