scholarly journals (140) Salt Tolerance Assessment of Kentucky Bluegrass Cultivars Selected for Drought Tolerance

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1057C-1057 ◽  
Author(s):  
Catherine M. Grieve ◽  
Stacy A. Bonos ◽  
James A. Poss

Six selections of Kentucky bluegrass (Poa pratensis L.) cultivars, selected based on their drought tolerance under field and growth chamber conditions in New Brunswick, N.J., were evaluated for salt tolerance based on yield and growth rates at eight soil water salinities [2 (control), 6, 8, 10, 12, 14, 18, and 22 dSm-1] from Apr. to Sept. 2005 in Riverside, Calif. Cultivars Baron and Brilliant were selected as drought sensitive and `Cabernet', `Eagleton', and `Midnight' were selected as drought tolerant. A Texas × Kentucky bluegrass (Poa arachnifera × Poa pratensis) hybrid selection (identified as A01-856) developed for improved drought and heat tolerance was also included. Vegetative clones were established in a randomized complete-block design with three replications, each containing 11 clones. Cumulative biomass and clone diameters were measured over time to evaluate relative yields and growth rates for the six cultivar selections. Based upon maximum absolute biomass production as a function of increasing EC, the order of production was `Baron' > `Brilliant' > `Eagleton' > `Cabernet' ≥ `Midnight' > A01-856. Yield relative to the non-saline control (2 dSm-1) for each cultivar was similar, except that the differences between cultivars were less pronounced, and `Baron' slightly outperformed `Brilliant'. Clone area expansion rates were analyzed with a phasic growth model and beta, the intrinsic growth rate of the exponential phase parameter, significantly varied with salinity. Ranking of cultivars, based on expansion rates, was similar to that based on cumulative biomass. Salinity tolerance in this experiment did not appear to be related to the observed ranking for drought tolerance.

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 999B-999
Author(s):  
James A. Poss ◽  
Catherine M. Grieve ◽  
Walter B. Russell ◽  
Stacy A. Bonos

Six cultivars or selections of Kentucky bluegrass (Poa pratensis L.) exposed to salinity stress were evaluated with ground-based remote sensing plant reflectance (R) measurements at wavelengths ranging from 350 nm to 2500 nm. Cultivars Baron, Brilliant, Cabernet, Eagleton, Midnight, and the selection A01-856, a Texas × Kentucky bluegrass hybrid (Poa arachnifera × P. pratensis), were grown outdoors from vegetative clones in a gravelly-sand medium from Apr. to Sept. 2005, in Riverside, Calif., at soil water salinities ranging from 2 to 22 dSm-1. Two Normalized Difference Vegetation Indicies (NDVI) were developed based on: 1) canopy reflectance in the visible domain at 695 and 670 nm and 2) an average of eight wavelengths in mid-infrared [Ravg = (R:1500, R:1680, R:1740, R:1940, R:2050, R:2170, R:2290, and R:2470 nm/8)] and the reference wavelength (670 nm). Both NDVIs were significantly sensitive to salinity-induced changes in grass canopies and were able to discriminate significantly between the salt-tolerant cultivars (`Baron', `Brilliant', and `Eagleton') and salt-sensitive cultivars (`Cabernet', `Midnight', and A01-856). Another remotely sensed index, based on the derivative of the absorbance (1/R) in the red-edge region between 600 and 800 nm, also generated a similar ranking to the NDVIs and biomass for the six cultivars. These findings indicate that remote sensing of canopy reflectance may represent an additional tool to evaluate and explain the biophysical or physiological differences among Kentucky bluegrass cultivars related to salt tolerance.


2005 ◽  
Vol 85 (1) ◽  
pp. 193-204 ◽  
Author(s):  
Abdo Badra ◽  
Léon-Etienne Parent ◽  
Yves Desjardins ◽  
Guy Allard ◽  
Nicolas Tremblay

Kentucky bluegrass is a common turf species used on golf courses, sports fields, municipal parks, sod farms, road banks, as well as residential and school yards. Our objective was to determine the effects of N, P, K rates on turfgrass quantitative response (clipping yield and underground turf biomass) and qualitative response (shoot density and foliage colour) under a continuous clipping removal. A 3-yr field study was conducted on two sites, a sand that met the specifications of the United States Golf Association (USGA) and a loam. The factorial experiment was arranged in a randomized complete block design with four replicates and different levels of three nutrients, N (0 or 50 to 300 kg ha-1 yr-1), P (0 or 21.8 to 87.3 kg P ha-1 yr-1), and K (0 or 41.7 to 250 kg K ha-1 yr-1). The maximum clipping yield was produced at the rate of 200 kg N ha-1 yr-1 in the loam and 300 kg N ha-1 yr-1 in the sand. Increasing N rates linearly reduced underground turf biomass. Added P and K had no effect on clipping yield and underground turf biomass. Nitrogen significantly improved shoot density and foliage colour. However, equivalent shoot density and colour ratings required 40 to 80 kg more N ha-1 yr-1 in the sand compared to the loam. Phosphorus and K had no significant effect on shoot density and colour in the loam. Colour response to P and K depended on N rates in the sand. Fertilizer units needed to increase soil test P averaged 6 kg added P ha-1 mg-1 PM-III kg-1 across soil types. To replenish soil K, 7 kg K ha-1 per mg KM-III kg-1 were required in the sand, and 3 kg K ha-1 per mg KM-III kg-1 in the loam. Phosphorus and K fertilizer programmes should account for P and K removals to maintain low to medium fertility levels for P, and medium for K when conditions are similar to those in this research. Key words: Turfgrass clipping yield, underground turf biomass, turfgrass shoot density, turfgrass foliage colour, Kentucky bluegrass fertilization


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Shah Saud ◽  
Xin Li ◽  
Yang Chen ◽  
Lu Zhang ◽  
Shah Fahad ◽  
...  

Drought stress encumbers the growth of turfgrass principally by disrupting the plant-water relations and physiological functions. The present study was carried out to appraise the role of silicon (Si) in improving the drought tolerance in Kentucky bluegrass (Poa pratensisL.). Drought stress and four levels (0, 200, 400, and 800 mg L−1) of Si (Na2SiO3·9H2O) were imposed after 2 months old plants cultured under glasshouse conditions. Drought stress was found to decrease the photosynthesis, transpiration rate, stomatal conductance, leaf water content, relative growth rate, water use efficiency, and turf quality, but to increase in the root/shoot and leaf carbon/nitrogen ratio. Such physiological interferences, disturbances in plant water relations, and visually noticeable growth reductions in Kentucky bluegrass were significantly alleviated by the addition of Si after drought stress. For example, Si application at 400 mg L−1significantly increased the net photosynthesis by 44%, leaf water contents by 33%, leaf green color by 42%, and turf quality by 44% after 20 days of drought stress. Si application proved beneficial in improving the performance of Kentucky bluegrass in the present study suggesting that manipulation of endogenous Si through genetic or biotechnological means may result in the development of drought resistance in grasses.


HortScience ◽  
2020 ◽  
Vol 55 (7) ◽  
pp. 1132-1143
Author(s):  
Qirui Cui ◽  
Haizheng Xiong ◽  
Yufeng Yufeng ◽  
Stephen Eaton ◽  
Sora Imamura ◽  
...  

Cowpea [Vigna unguiculate (L.) Walp.] is not only a healthy, nutritious, and versatile leguminous crop; it also has a relatively high adaptation to drought. Research has shown that cowpea lines have a high tolerance to drought, and many of them can survive more than 40 days under scorching and dry conditions. The cowpea (Southern pea) breeding program at the University of Arkansas has been active for more than 50 years and has produced more than 1000 advanced breeding lines. The purpose of this study was to evaluate the drought-tolerant ability in Arkansas cowpea lines and use the drought-tolerant lines in cowpea production or as parents in cowpea breeding. A total of 36 University of Arkansas breeding lines were used to screen drought tolerance at the seedling stage in this study. The experiment was conducted in the greenhouse using a randomized complete block design (RCBD) with two replicates, organized in a split-plot manner, where the drought treatment (drought and nondrought stress) as the main plot and the cowpea genotypes as the subplot. Drought stress was applied for 4 weeks, and three drought-tolerant–related traits were collected and analyzed. Results showed that cowpea breeding lines: ‘17-61’, ‘17-86’, ‘Early Scarlet’, and ‘ARBlackeye #1’ were found to be drought tolerant.


Crop Science ◽  
2020 ◽  
Author(s):  
Paul G. Harris ◽  
Paul G. Johnson ◽  
Kelly Kopp ◽  
B. Shaun Bushman

Author(s):  
Kun Zhang ◽  
Weiting Lyu ◽  
Yanli Gao ◽  
Xiaxiang Zhang ◽  
Yan Sun ◽  
...  

Abstract Choline, as a precursor of glycine betaine (GB) and phospholipids, is known to play roles in plant tolerance to salt stress, but the downstream metabolic pathways regulated by choline conferring salt tolerance are still unclear for non-GB-accumulating species. The objectives were to examine how choline affects salt tolerance in a non-GB-accumulating grass species and to determine major metabolic pathways of choline regulating salt tolerance involving GB or lipid metabolism. Kentucky bluegrass (Poa pratensis) plants were subjected to salt stress (100 mM NaCl) with or without foliar application of choline chloride (1 mM) in a growth chamber. Choline or GB alone and the combined application increased leaf photochemical efficiency, relative water content and osmotic adjustment and reduced leaf electrolyte leakage. Choline application had no effects on the endogenous GB content and GB synthesis genes did not show responses to choline under nonstress and salt stress conditions. GB was not detected in Kentucky bluegrass leaves. Lipidomic analysis revealed an increase in the content of monogalactosyl diacylglycerol, phosphatidylcholine and phosphatidylethanolamine and a decrease in the phosphatidic acid content by choline application in plants exposed to salt stress. Choline-mediated lipid reprogramming could function as a dominant salt tolerance mechanism in non-GB-accumulating grass species.


2006 ◽  
Vol 86 (4) ◽  
pp. 1107-1118 ◽  
Author(s):  
Abdo Badra ◽  
Léon-Étienne Parent ◽  
Guy Allard ◽  
Nicolas Tremblay ◽  
Yves Desjardins ◽  
...  

A 3-yr field study was conducted in a loam and a sand site to determine the effects of N, P, and K application rates on N status, shoot density and foliage colour of Kentucky bluegrass clippings and to derive critical N values. The experiment was arranged in a completely randomized block design with four replicates and three nutrients, N (0 or 50 to 300 kg ha-1 yr-1), P (0 or 21.8 to 87.3 kg P ha-1 yr-1), and K (0 or 41.7 to 250 kg K ha-1 yr-1), equally broadcast six times per growing season. We examined N concentration values, log-transformed N concentration values, and CND values for compositional nutrient simplexes comprising one (VN1), three (VN3), five (VN5), or 11 (VN11) macro- and micro-nutrients. Critical values for N expressions were obtained from linear relationships with targeted visual shoot density and foliage colour ratings that were closely related to each other (R2 = 0.92). The highest coefficients of determination (0.975 to 0.980) were obtained with VN5 and VN11. The VN5 values were consistent with literature data and across experimental sites, and were the most successful (99% success) in diagnosing N sufficiency in 328 qualified specimens from commercial sod farms. Compared with raw concentrations, the CND transformation reduced from 0.6 to 0.1 the degree of inter-correlation among nutrients in principal component analysis and was amenable to a χ2 distribution of CND indices. Using a critical imbalance index (CNDr2) of 5.6as χ2 value, and a critical CND IN2 index of 1.5 for a 5-nutrient simplex, we diagnosed as imbalanced 179 qualified specimens of which 110 specimens presented excessively high N level among the 328 qualified specimens in commercial stands. The proposed five-nutrient CND norms proved to be effective in diagnosing N status in Kentucky bluegrass clippings across experimental, literature, and survey data sets. Key words: Plant tissue nutrient diagnosis, DRIS, CND, Kentucky bluegrass nitrogen fertilization, turfgrass shoot density, turfgrass foliage colour


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1041A-1041
Author(s):  
Tara E. Paranick ◽  
N. Suzanne Lang

Shaded environments present major obstacles for establishing high quality, persistent, and resistant turfs. Exogenous fructose applications are being examined as a potential method to counteract the effects of shade on turf. This work examines the effectiveness of fructose applications under different light levels on two fine leaf fescue cultivars: chewings fescue (Festucarubra var. commutata) `SR5100' and creeping red fescue (Festucarubra var. rubra) `Dawson'. The experiment was conducted at Michigan State University, East Lansing, inside a simulated dome environment. The experiment was a randomized complete-block design that began 21 Oct. 2004 with two main factors: light and fructose. There were three light treatments: ambient light (shaded); supplemental high light; and supplemental low light. Fructose (0% or 1.25% weight/volume), dissolved in water with an organosilicone adjuvant, was applied once per week. Quality and color ratings, clippings, core samples, density, and leaf reflectance were recorded. In addition, light response curves (LRC) were taken inside an Econoair® growth chamber using a LI-COR-6400® on the fine fescues, kentucky bluegrass (Poa pratensis) `Cynthia', and bermudagrass (Cyondon dactylon) `Princess'. Preliminary results show that fructose had no significant effect in each light treatment for turf quality and color. However, fructose had a significant impact on clipping weights and density. The LRC specified the required and potential carbon needs as well as indicated the threshold levels, respectively, by species. The impact of fructose alone and in combination with supplemental light on photosynthesis efficiency will be presented.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 414A-414 ◽  
Author(s):  
Saad Alshammary ◽  
Y.L. Qian ◽  
S.J. Wallner

The need for salinity-tolerant turfgrasses is increasing because of increased use of effluent water for turfgrass irrigation. Greenhouse studies were conducted to determine the relative salt tolerance and salt tolerance mechanisms of `Challenger' Kentucky bluegrass (Poa pratensis), `Arid' tall fescue (Festuca arundinacea), `Fults' alkaligrass (Puccinellia distans.), and a saltgrass (Distichlis spicata) collection. Kentucky bluegrass and tall fescue were irrigated with saline solutions at 0.2,1.7, 4.8, or 9.9 dS/m, whereas alkaligrass and saltgrass were irrigated with saline solutions at 0.2, 28.1, 32.8, or 37.5 dS/m prepared using a mixture of NaCl and CaCl2. The salinity levels that caused 50% shoot growth reduction were 9.0, 10.4, 20.0, and 28.5 dS/m for Kentucky bluegrass, tall fescue, saltgrass, and alkaligrass, respectively. Concentrations of proline, a proposed cytoplasmic compatible solute, were 25.8, 30.4, 68.1, and 17.7 μmol/g shoot fw in Kentucky bluegrass, tall Fescue, alkaligrass, and saltgrass, respectively, at the highest salinity level imposed. Bicellular, salt-secreting glands were only observed by scanning electron microscopy on leaves of saltgrass, indicating salt secretion is one of the important salt tolerance mechanisms adopted by saltgrass. Ion contents (Na, Cl, and Ca) in both shoots and roots of all grasses increased with increasing salinity levels. However, alkaligrass maintained a much lower Na, Ca, and Cl contents in roots and shoots than other grasses, suggesting that ion exclusion is one of the major salt tolerance mechanisms in alkaligrass. Tall fescue did not appear to restrict the uptake and translocation of salt in shoot tissues, but maintained a higher K/Na ratio than all other grasses under saline conditions.


HortScience ◽  
2015 ◽  
Vol 50 (8) ◽  
pp. 1241-1247 ◽  
Author(s):  
Meghyn Meeks ◽  
Ambika Chandra ◽  
Ben G. Wherley

Interspecific hybrids between texas bluegrass (Poa arachnifera Torr.) and kentucky bluegrass (Poa pratensis L.) are known to exhibit good heat tolerance, which has aided in their adaptation to the warmer climates of the southern United States, but their tolerance to shade has not been investigated. The objectives of this study were to 1) evaluate the growth responses of interspecific bluegrass hybrids (P. arachnifera × P. pratensis) in comparison with kentucky bluegrasses and a shade-tolerant cultivar of tall fescue (Festuca arundinacea Schreb.) under full sunlight and shaded environments, 2) identify optimum times to evaluate shade tolerance using the selected growth measurements, 3) calculate the minimum daily light requirements to retain acceptable turfgrass quality, and 4) determine if trinexapac-ethyl (TE) applications enhance hybrid bluegrass quality under shade. Two 10-week greenhouse experiments (late spring and early fall) were conducted in Dallas, TX. Within each of three light environments a randomized complete block design was used to accommodate three replications of eight genotypes treated with and without TE (0 or 0.228 kg·ha−1 a.i.). Turfgrass quality, leaf elongation rates, clipping dry weights, and percent green cover were measured. Meaningful comparisons were best during the late spring when daily light integrals (DLI) were optimum for healthy plant growth. Shade-tolerant hybrid bluegrasses (DALBG 1201 and TAES 5654) were identified using turfgrass quality and leaf elongation rates. These genotypes exhibited above-acceptable turfgrass quality in all environments, and a reduced leaf elongation rate similar to the tested dwarf-type tall fescue. DLI requirements of DALBG 1201 and TAES 5654 were ≤4 to achieve acceptable quality. TE applications generally did not improve turfgrass quality of genotypes, although leaf elongation rates were significantly reduced in all environments.


Sign in / Sign up

Export Citation Format

Share Document