scholarly journals Floral Competence of Primocane-fruiting Blackberries Prime-Jan and Prime-Jim Grown at Three Temperature Regimens

HortScience ◽  
2007 ◽  
Vol 42 (3) ◽  
pp. 508-513 ◽  
Author(s):  
Michele A. Stanton ◽  
Joseph C. Scheerens ◽  
Richard C. Funt ◽  
John R. Clark

We investigated the responses of staminate and pistillate floral components of Prime-Jan and Prime-Jim primocane-fruiting blackberry (Rubus L. subgenus Rubus Watson) to three different growth chamber temperature regimens, 35.0/23.9 °C (HT), 29.4/18.3 °C (MT), and 23.9/12.8 °C (LT). Temperature was negatively related to flower size, and morphologically abnormal floral structures were evident in 41% and 98% of the MT- and HT-grown plants, respectively. Anthers of LT- and MT-grown plants dehisced. The viability of pollen (as deduced through staining) from Prime-Jan grown at LT or MT exceeded 70%, whereas that of Prime-Jim pollen was significantly reduced (<40%) by the MT regimen. In vitro pollen germinability (typically <50%) was negatively influenced by temperature but was unaffected by cultivar. Pollen useful life was diminished under HT conditions; LT-grown pollen held at 23.9 °C retained 63% of its original germinability over a 32-h period, while the germinability of that held at 35.0 °C for 16 hours decreased by 97%. Virtually all flowers cultured under HT conditions were male sterile, exhibiting structural or sporogenous class abnormalities including petaloidy and malformation of tapetal cells or microspores; HT anthers that were present, failed to dehisce. Stigma receptivity, pistil density, and drupelet set were also negatively influenced by increased temperature; values for these parameters of floral competency among control plants were reduced by 51%, 39%, and 76%, respectively, in flowers cultured under HT conditions. In this study, flowering and fruiting parameters, and presumably the yield potential of Prime-Jan and Prime-Jim, were adversely affected by increased temperature. However, their adaptive response to heat stress under field conditions awaits assessment.

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1048B-1048
Author(s):  
Michele A. Stanton ◽  
Joseph C. Scheerens ◽  
Richard C. Funt ◽  
John R. Clark

We investigated the response of staminate and pistillate floral components of Prime-Jan™ and Prime-Jim™ primocane-fruiting blackberry (Rubus L. subgenus Rubus Watson) to three different growth chamber temperature regimes, 35.0/23.9 °C (HT), 29.4/18.3 °C (MT), and 23.9/12.8 °C (LT). Temperature was negatively related to flower size and morphological abnormalities in floral structures were evident in 41% and 98% of the MT- and HT-grown plants, respectively. The viability (stainability) of pollen from LT- and MT-grown Prime-Jan™ flowers exceeded 70%; that of Prime-Jim™ pollen was significantly reduced (<40%) by the MT regime. Pollen in-vitro germinability was negatively influenced by temperature but was unaffected by cultivar. LT-grown pollen held at 23.9 °C retained 63% of its original germinability over a 32-hour period; the germinability of LT-grown pollen held at 35.0 °C was decreased by 97% from its original level after 16 hours. Virtually all flowers cultured under HT conditions were male-sterile, exhibiting structural and/or sporogenous class abnormalities including petaloidy, malformation of tapetal cells, and microspores or failure of dehiscence. The duration of stigma receptivity, pistil density, and drupelet set were also negatively influenced by increasing temperature; values for these parameters of floral competency among control plants were reduced by 51%, 39%, and 76%, respectively, in flowers cultured under HT conditions. Herein, flowering and fruiting parameters and presumably the yield potential of Prime-Jan™ and Prime-Jim™ were adversely affected by increased temperature. However, assessment of their adaptative response to heat stress under field conditions awaits experimentation.


2008 ◽  
Vol 16 (5) ◽  
pp. 355-359 ◽  
Author(s):  
Thaise Graciele Carrasco ◽  
Laise Daniela Carrasco-Guerisoli ◽  
Izabel Cristina Fröner

2020 ◽  
Vol 61 (5) ◽  
pp. 988-1004 ◽  
Author(s):  
Xiaoying Pan ◽  
Wei Yan ◽  
Zhenyi Chang ◽  
Yingchao Xu ◽  
Ming Luo ◽  
...  

Abstract Pollen development is critical to the reproductive success of flowering plants, but how it is regulated is not well understood. Here, we isolated two allelic male-sterile mutants of OsMYB80 and investigated how OsMYB80 regulates male fertility in rice. OsMYB80 was barely expressed in tissues other than anthers, where it initiated the expression during meiosis, reached the peak at the tetrad-releasing stage and then quickly declined afterward. The osmyb80 mutants exhibited premature tapetum cell death, lack of Ubisch bodies, no exine and microspore degeneration. To understand how OsMYB80 regulates anther development, RNA-seq analysis was conducted to identify genes differentially regulated by OsMYB80 in rice anthers. In addition, DNA affinity purification sequencing (DAP-seq) analysis was performed to identify DNA fragments interacting with OsMYB80 in vitro. Overlap of the genes identified by RNA-seq and DAP-seq revealed 188 genes that were differentially regulated by OsMYB80 and also carried an OsMYB80-interacting DNA element in the promoter. Ten of these promoter elements were randomly selected for gel shift assay and yeast one-hybrid assay, and all showed OsMYB80 binding. The 10 promoters also showed OsMYB80-dependent induction when co-expressed in rice protoplast. Functional annotation of the 188 genes suggested that OsMYB80 regulates male fertility by directly targeting multiple biological processes. The identification of these genes significantly enriched the gene networks governing anther development and provided much new information for the understanding of pollen development and male fertility.


2021 ◽  
Vol 5 (4) ◽  
pp. 61-69
Author(s):  
Syed Mazahir Hussain ◽  
Khursheed Hussain ◽  
Ajaz Ahmad Malik ◽  
Amjad M Hussaini ◽  
Syeda Farwah ◽  
...  

1975 ◽  
Vol 55 (1) ◽  
pp. 77-84 ◽  
Author(s):  
T. B. DAYNARD ◽  
R. B. HUNTER

Identical experiments were conducted at the Elora Research Station, near Guelph, Ontario in 1970 and 1971 with the objective of determining the relationships among whole-plant dry matter (DM) yield, whole-plant moisture content, and grain moisture content of corn (Zea mays L.) during the later part of the growing season. Each experiment involved eight commercial hybrids representative of the range in maturity, endosperm type, lodging resistance, and grain yield potential of corn hybrids grown commercially in central Ontario. The hybrids were sampled at weekly intervals over an 8-wk period beginning approximately 1 September; the sampled plants were divided into their leaf, stalk, husk, ear and grain components and oven-dried. Fresh and dry weights were used to calculate dry matter (DM) yields and "at harvest" moisture contents of the various components, and of the entire plant. Averaged across the eight hybrids, maximum DM yield was attained at whole-plant moisture content of 66–70%, and a grain moisture content of 45–50%. Among hybrids, 66% whole-plant moisture corresponded to a range in grain moisture content from 41 to 47%. Two additional experiments were grown also at Elora in 1970 and 1971 to evaluate the effects of harvest date on the DM yield and in vitro digestibility of corn plants and their component plant parts. Each experiment involved four representative commercial hybrids which were sampled at four equal time intervals during the month of September, and divided into grain, cob, husks (including shank) and stover (including leaves, leaf sheaths, stalks and tassels) for dry weight and in vitro digestibility measurement. Whole-plant DM digestibility was essentially constant over a range of whole-plant moisture from 76 to 56% in 1970, and from 76 to 64% in 1971. The consistency of whole-plant digestibility was the result of compensating changes in component yield and digestibility. A decrease in the digestibility of the stover, husks and cob with delayed harvest was compensated for by an increase in the proportion of grain in the whole-plant yield.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2173
Author(s):  
Zaira Pardo ◽  
Iván Mateos ◽  
Rómulo Campos ◽  
Andrea Francisco ◽  
Manuel Lachica ◽  
...  

Heat stress reduces the feed intake and growth of pigs. We hypothesized that heat stress affects the intestinal fermentation capacity of pigs. Sixteen Iberian pigs (44 ± 1.0 kg) were randomly assigned to one of two treatments (eight pigs/treatment) for 4 weeks—heat stress (HS; 30 °C) ad libitum or thermoneutral (TN; 20 °C) pair feeding. Frozen rectum contents were used as inocula for 24 h in vitro incubations in which a mixture of starches, citrus pectin, inulin from chicory, and cellulose were the substrates. Cellulose was poorly degraded, whereas pectin and the mixture of starches were the most fermentable substrates according to total short-chain fatty acid (SCFA) production. The mixture of starches and inulin produced the greatest amount of gas. For all substrates, heat stress enhanced gas production (8%, p = 0.001), total SCFA production (16%, p = 0.001), and the production of acetate and propionate (12% and 42%, respectively; p = 0.001). The increased isoacid production (33%, p = 0.001) and ammonia concentration (12%, p = 0.001) may indicate protein fermentation under heat stress. In conclusion, the in vitro intestinal fermentation capacity of pigs under heat stress was increased compared to thermoneutral conditions, which may indicate an adaptive response to heat stress.


1977 ◽  
Vol 232 (3) ◽  
pp. E336
Author(s):  
J T Pento ◽  
L C Waite ◽  
P J Tracy ◽  
A D Kenny

The role of parathyroid hormone (PTH) in the adaptive response in gut calcium transport to calcium deprivation has been studied in the rat using both the in vitro everted duodenal sac and the in situ ligated duodenal segment technique. Intact or parathyroidectomized (PTX) young rats were placed on a low calcium (0.01%) diet for 7-, 14-, or 21-day adaptation periods and compared with control rats maintained on a high calcium (1.5%) diet. Prior PTX (3 days before the start of the adaptation period) abolished the adaptive response (enhanced calcium transport) induced by calcium deprivation for a 7-day adaptation period, but did not abolish a response after a 21-day period. A 14-day adaptation period gave equivocal results. It is concluded that PTH appears to be necessary for short-term (7-day) adaptation, but not for long-term (21-day) adaptation to calcium deprivation. However, if accessory parathyroid tissue is present, the data could be interpreted differently: the essentiality of PTH for the adaptive response might be independent of the length of the adaptation period. The data also contribute to a possible resolution of the controversy concerning the involvement of PTH in the regulation of intestinal calcium transport in the rat.


2020 ◽  
Vol 71 (16) ◽  
pp. 4828-4842
Author(s):  
Hao Ai ◽  
Yue Cao ◽  
Ajay Jain ◽  
Xiaowen Wang ◽  
Zhi Hu ◽  
...  

Abstract Members of the Low Phosphate Root (LPR) family have been identified in rice (Oryza sativa) and expression analyses have been conducted. Here, we investigated the functions of one of the five members in rice, LPR5. qRT-PCR and promoter–GUS reporter analyses indicated that under Pi-sufficient conditions OsLPR5 was highly expressed in the roots, and specific expression occurred in the leaf collars and nodes, and its expression was increased under Pi-deficient conditions. In vitro analysis of the purified OsLPR5 protein showed that it exhibited ferroxidase activity. Overexpression of OsLPR5 triggered higher ferroxidase activity, and elevated concentrations of Fe(III) in the xylem sap and of total Fe in the roots and shoots. Transient expression of OsLPR5 in Nicotiana benthamiana provided evidence of its subcellular localization to the cell wall and endoplasmic reticulum. Knockout mutation in OsLPR5 by means of CRISPR-Cas9 resulted in adverse effects on Pi translocation, on the relative expression of Cis-NATOsPHO1;2, and on several morphological traits, including root development and yield potential. Our results indicate that ferroxidase-dependent OsLPR5 has both a broad-spectrum influence on growth and development in rice as well as affecting a subset of physiological and molecular traits that govern Pi homeostasis.


Sign in / Sign up

Export Citation Format

Share Document