scholarly journals Effect of Winter Cover Crop Residue on No-till Pumpkin Yield

HortScience ◽  
2007 ◽  
Vol 42 (7) ◽  
pp. 1568-1574 ◽  
Author(s):  
E. Ryan Harrelson ◽  
Greg D. Hoyt ◽  
John L. Havlin ◽  
David W. Monks

Throughout the southeastern United States, vegetable growers have successfully cultivated pumpkins (Cucurbita pepo) using conventional tillage. No-till pumpkin production has not been pursued by many growers as a result of the lack of herbicides, no-till planting equipment, and knowledge in conservation tillage methods. All of these conservation production aids are now present for successful no-till vegetable production. The primary reasons to use no-till technologies for pumpkins include reduced erosion, improved soil moisture conservation, long-term improvement in soil chemical and microbial properties, and better fruit appearance while maintaining similar yields compared with conventionally produced pumpkins. Cover crop utilization varies in no-till production, whereas residue from different cover crops can affect yields. The objective of these experiments was to evaluate the influence of surface residue type on no-till pumpkin yield and fruit quality. Results from these experiments showed all cover crop residues produced acceptable no-till pumpkin yields and fruit size. Field location, weather conditions, soil type, and other factors probably affected pumpkin yields more than surface residue. Vegetable growers should expect to successfully grow no-till pumpkins using any of the winter cover crop residues tested over a wide range in residue biomass rates.

2013 ◽  
Vol 53 (3) ◽  
pp. 248-252 ◽  
Author(s):  
Henrique von Hertwig Bittencourt ◽  
Paulo Emílio Lovato ◽  
Jucinei José Comin ◽  
Marcos Alberto Lana ◽  
Miguel Angel Altieri ◽  
...  

Abstract A greenhouse assay was carried out to evaluate the effect of winter cover crop residues on spontaneous plants that commonly occur on summer annual fields in Southern Brazil. Dry shoot residues of rye (Secale cereale), vetch (Vicia villosa), fodder radish (Raphanus sativus), and a mix of the three species, were applied over pots that had been seeded with alexandergrass (Brachiaria plantaginea), hairy beggarticks (Bidens pilosa), wild poinsettia (Euphorbia heterophylla), and morning glory (Ipomoea grandifolia) at four different depths (0, 1, 2, or 4 cm). Plant emergence and biomass production were measured. Residues of rye reduced the emergence of B. plantaginea, while vetch diminished I. grandifolia and B. plantaginea emergence. Fodder radish reduced emergence of I. grandifolia. The mix of cover crops reduced emergence of I. grandifolia, B. plantaginea, and B. pilosa. None of the cover crops differed from the control on E. heterophylla emergence. The lowest yields in spontaneous plant shoot biomass were obtained from the cover with rye + vetch + fodder radish. The lowest values of root biomass occurred under cover with rye, fodder radish or the mix. Use of vetch residues decreased emergence of B. plantaginea and I. grandifolia, but enhanced biomass accumulation by the latter


2014 ◽  
Vol 18 (12) ◽  
pp. 5239-5253 ◽  
Author(s):  
I.-Y. Yeo ◽  
S. Lee ◽  
A. M. Sadeghi ◽  
P. C. Beeson ◽  
W. D. Hively ◽  
...  

Abstract. Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990–2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha−1, but decreased to 4.6–10.1 kg ha−1 with cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~ 2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implementation of cover crop programs, in part by helping to target critical pollution source areas for cover crop implementation.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 461E-461
Author(s):  
H.J. Hruska ◽  
G.R. Cline ◽  
A.F. Silvernail ◽  
K. Kaul

Research began in 1999 to examine sustainable production of bell peppers (Capsicum annuum L.) using conservation tillage and legume winter cover crops. Tillage treatments included conventional tillage, strip-tillage, and no-tillage, and winter covers consisted of hairy vetch (Vicia villosa Roth), winter rye (Secale cereale L.), and a vetch/rye biculture. Pepper yields following the rye winter cover crop were significantly reduced if inorganic N fertilizer was not supplied. However, following vetch, yields of peppers receiving no additional N were similar to yields obtained in treatments receiving the recommended rate of inorganic N fertilizer. Thus, vetch supplied sufficient N to peppers in terms of yields. Pepper yields following the biculture cover crop were intermediate between those obtained following vetch and rye. When weeds were controlled manually, pepper yields following biculture cover crops were similar among the three tillage treatments, indicating that no-tillage and strip-tillage could be used successfully if weeds were controlled. With no-tillage, yields were reduced without weed control but the reduction was less if twice the amount of residual cover crop surface mulch was used. Without manual weed control, pepper yields obtained using strip-tillage were reduced regardless of metolachlor herbicide application. It was concluded that a vetch winter cover crop could satisfy N requirements of peppers and that effective chemical or mechanical weed control methods need to be developed in order to grow peppers successfully using no-tillage or strip-tillage.


2014 ◽  
Vol 30 (5) ◽  
pp. 473-485 ◽  
Author(s):  
Natalie P. Lounsbury ◽  
Ray R. Weil

AbstractOrganic no-till (NT) management strategies generally employ high-residue cover crops that act as weed-suppressing mulch. In temperate, humid regions such as the mid-Atlantic USA, high-residue winter cover crops can hinder early spring field work and immobilize nutrients for cash crops. This makes the integration of cover crops into rotations difficult for farmers, who traditionally rely on tillage to prepare seedbeds for early spring vegetables. Our objectives were to address two separate but related goals of reducing tillage and integrating winter cover crops into early spring vegetable rotations by investigating the feasibility of NT seeding spinach (Spinacia oleracea L.), an early spring vegetable, into winterkilled cover crops. We conducted a four site-year field study in the Piedmont and Coastal Plain regions of Maryland, USA, comparing seedbed conditions and spinach performance after forage radish (FR) (Raphanus sativus L.), a low-residue, winterkilled cover crop, spring oat (Avena sativa L.), the traditional winterkilled cover crop in the area, a mixture of radish and oat, and a no cover crop (NC) treatment. NT seeded spinach after FR had higher yields than all other cover crop and tillage treatments in one site year and was equal to the highest yielding treatments in two site years. Yield for NT spinach after FR was as high as 19 Mg ha−1 fresh weight, whereas the highest yield for spinach seeded into a rototilled seedbed after NC was 10 Mg ha−1. NT seeding spring spinach after a winterkilled radish cover crop is feasible and provides an alternative to both high-residue cover crops and spring tillage.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 682e-682
Author(s):  
J.P. Mitchell ◽  
C. Shennan ◽  
D. Peters ◽  
R.O. Miller

Sustainable alternatives for saline drainage water management in areas such as California's San Joaquin Valley are needed. Previous work has demonstrated the short-term potential for reuse of saline drainage water for irrigation in this area. Results from our 6-year cyclic drainage reuse study, however, indicate that soil structural problems may occur which can greatly reduce stand establishment and crop yields in periodically salinized soils. To prevent these problems, we are evaluating the effectiveness of winter cover crop incorporation and gypsum applications relative to conventional fallows, for improving/maintaining soil physical properties and crop productivity in cyclically salinized soils. Six winter cover crop/fallow treatments have been imposed upon a rotation of tomatoes, tomatoes and cotton as summer crops. By monitoring water use, relevant soil physical and chemical properties as well as crop performance during the course of this 3-year rotation study, we are assessing the potential benefits and constraints of using winter cover crops in drainage water reuse systems.


2016 ◽  
Vol 32 (5) ◽  
pp. 463-473 ◽  
Author(s):  
Rick A. Boydston ◽  
Martin M. Williams

AbstractFall-planted cover crops offer many benefits including weed suppressive residues in spring sown crops when controlled and left on the soil surface. However, vegetable growers have been slow to adopt direct-seeding (no-till) into cover crop residues. Field studies were conducted in 2009 and 2010 near Paterson, WA and Urbana, IL to evaluate mortality of rye and common vetch (WA) hairy vetch (IL) cover crops, weed density and biomass, and snap bean growth and yield following four cover crop control methods utilizing a roller–crimper. Rye had higher mortality than common and hairy vetch by roller-crimping, and carfentrazone applied after roller crimping only slightly increased vetch mortality. Heavy residues of rye and escaped vetch were difficult to plant into, often resulting in lower snap bean populations. Rye and hairy vetch residues suppressed final weed biomass, while common vetch reduced weed biomass 1 of 2 years. Escaped plants of both vetch species became a weed. Snap bean yields were inconsistent and often lower following cover crops compared with a fallow treatment. Being able to completely control cover crops and to plant, manage escaped weeds and mechanically harvest in the presence of heavy residues are challenges that deter vegetable growers from readily adopting these systems.


2010 ◽  
Vol 37 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Ronald B. Sorensen ◽  
Timothy B. Brenneman ◽  
Marshall C. Lamb

Abstract Strip tillage with various crop covers in peanut (Arachis hypogaea, L.) production has not shown a clear yield advantage over conventional tillage, but has been found to reduce yield losses from some diseases. This study was conducted to determine pod yield and disease incidence between two tillage practices, five winter cover crops, three peanut cultivars, and three fungicide programs. Conventional and strip tillage treatments were implemented on a Greenville sandy loam (fine, kaolinitic, thermic Rhodic Kandiudults) near Shellman, GA. Five winter cereal grain cover crops (strip tillage) and a no-cover crop treatment were sprayed at recommended (1R), half recommended (0.5R) or untreated (0R) fungicide programs. Within peanut cultivars, leaf spot (Cercospora arachidicola Hori) intensity decreased as the number of fungicide applications increased; however, stem rot (Sclerotium rolfsii) incidence was the same for the 1R and 0.5R fungicide programs but increased 0R program. Conventional tilled peanuts developed more leaf spot compared with strip tillage. There was no difference in leaf spot ratings among winter crop covers. There was no difference in stem rot incidence with tillage or winter cover crop. There was no yield difference with peanut cultivar. Pod yield was the same for the 1R and 0.5R fungicide program (3867 kg/ha) but decreased at the 0R fungicide program (2740 kg/ha). Pod yield was greater with conventional tillage and strip tillage with black oats (Avena sativa L.) (3706 kg/ha) compared with strip tillage of other winter crop cover treatments (3358 kg/ha). Conventional tillage had more leaf spot, equal incidence of stem rot, and higher yield compared with strip tillage. The 0.5R fungicide program had the same yield compared with the 1R fungicide program implying a possible 50% savings on fungicide applications on well rotated fields with lower disease risk.


Sign in / Sign up

Export Citation Format

Share Document