scholarly journals Optimizing the Storage Temperature and Humidity for Fresh Cranberries: A Reassessment of Chilling Sensitivity

HortScience ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 439-446 ◽  
Author(s):  
Charles F. Forney

Studies were conducted over three seasons to determine the relationship of temperature and humidity on the storage life of fresh cranberry (Vaccinium macrocarpon Aiton) fruit. Each year, cranberries harvested from four commercial bogs were stored at temperatures ranging from 0 to 10 °C in combination with relative humidities (RH) ranging from 75% to 98%. Fruit were stored under these conditions for up to 6 months and were evaluated monthly for marketability, decay, physiological breakdown, weight loss, and firmness immediately after removal and after an additional week at 20 °C. The percentage of marketable fruit declined substantially over time in all storage conditions with 41% to 57% becoming unmarketable after 2 months as a result of both decay and physiological breakdown. Relative humidity had a greater effect on fruit storage life than temperature and after 5 months, the amount of marketable fruit stored in high (98%) and medium (88%) RH was 71% and 31% less than that stored in low (75% to 82%) RH. Rates of fresh weight loss increased as RH in storage decreased and was 0.41%, 0.81%, and 0.86% per month in fruit stored in high, medium, and low RH, respectively. Fruit firmness was not significantly affected by RH. The effects of storage temperatures ranging from 0 to 7 °C on marketable fruit after 2 to 5 months of storage were not significant. Only fruit stored at 10 °C consistently had fewer marketable fruit when compared with fruit stored at lower temperatures. Storage temperature had no significant effect on decay incidence. However, physiological breakdown was greatest in fruit stored at 10 °C. Rates of fresh weight loss increased with storage temperature, ranging from 0.35% to 1.17% per month for fruit stored at 0 to 10 °C, respectively. Contrary to previous reports, no evidence of chilling injury was found in cranberry fruit stored at 0 °C. Results suggest that cranberry fruit should be stored at 0 to 7 °C and 75% to 82% RH to retain marketable fruit.

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1050C-1050
Author(s):  
Charles F. Forney ◽  
Stephanie Bishop ◽  
Michele Elliot ◽  
Vivian Agar

Extending the storage life of fresh cranberries (Vaccinium macrocarpon Ait.) requires an optimum storage environment to minimize decay and physiological breakdown (PB). To assess the effects of relative humidity (RH) and temperature on storage life, cranberry fruit from four bogs were stored over calcium nitrate, sodium chloride, or potassium nitrate salts, which maintained RH at 75%, 88%, and 98%, respectively. Containers at each RH were held at 0, 3, 5, 7, or 10 °C and fruit quality was evaluated monthly for 6 months. Both decay and PB increased with increasing RH in storage. After 6 months, 32%, 38%, and 54% of fruit were decayed and 28%, 31%, and 36% developed PB when stored in 75%, 88%, and 98% RH, respectively. The effects of RH continued to be apparent after fruit were removed from storage, graded, and held for 7 days at 20 °C. The decay of graded fruit after 4 months of storage in 75%, 88%, or 98% RH was 10%, 13%, and 31%, respectively, while PB was 12%, 12%, and 17%, respectively. Fresh weight loss decreased as RH increased averaging 1.9%, 1.4%, and 0.7% per month for storage in 75%, 88%, and 98% RH, respectively. Fruit firmness was not affected by RH. Storage temperature had little effect on decay. However, PB was greatest in fruit stored at 10 °C, encompassing 55% of fruit after 5 months of storage. When graded fruit were held an additional 7 days at 20 °C, decay and PB were greater in fruit previously stored at 0 or 3 °C than at 5, 7, or 10 °C. Fresh weight loss increased as storage temperature increased, averaging 0.8%, 1.0%, 1.3%, 1.7%, and 1.9% per month at 0, 3, 5, 7, and 10 °C, respectively. Fruit firmness decreased during storage, but was not affected by storage temperature. To maximize storage and shelf life, cranberry fruit should be stored in a RH of about 75% at 5 °C.


1990 ◽  
Vol 30 (5) ◽  
pp. 693 ◽  
Author(s):  
ME Edwards ◽  
RM Blennerhassett

Three trials were undertaken to study storage conditions and handling procedures required to maximise the postharvest storage life of honeydew melons (Cucumis melo L. var. inodorus Naud.).Honeydew melons treated with chlorine (1000 mg/L), benomyl (250 mg/L) + guazatine (500 mg/L), shrink wrap (17 ym Cryovac XDR film), Semperfresh, wax, or combinations of these treatments were stored at 4 or 8�C, for 4 or 6 weeks. Benomyl plus guazatine reduced the development of storage rots associated with Alternaria and Fusarium spp. The use of shrink wrap and wax reduced water loss by melons but increased fungal infection in some cases. Shrink wrapping combined with the fungicide treatment effectively reduced the incidence of fungal breakdown in the storage period for up to 4 weeks. Wax coating with full strength Citruseal wax caused anaerobic tissue breakdown. Melons were affected by chilling injury at 4�C. Control of bacterial rots with benomyl + guazatine or with chlorine was variable. Semperfresh did not reduce the incidence of fungal breakdown or water loss from the melons. The results indicate that storage of honeydew melons for 4 weeks at 8�C by pretreating with fungicide is possible but the melons soften and rot after 6 weeks, making them unsaleable. Four weeks should be adequate to allow for sea freighting of honeydew melons to markets in South East Asia. Further research is required to determine the optimum storage temperature for honeydew melons.


HortScience ◽  
1990 ◽  
Vol 25 (8) ◽  
pp. 854c-854
Author(s):  
P. Perkins-Veazie ◽  
J. K. Collins

Okra pods are highly perishable due to a high respiration rate and chilling sensitivity. The purpose of this experiment was to evaluate okra cultivar response to package and storage temperature. Freshly harvested `Annie Oakley', `Blondy', `Burgundy', `Clemson Spineless' and `Emerald' okra pods were placed in plastic boxes and shrink-wrap bags. Pods were evaluated for weight loss, chilling injury and electrolyte leakage during 8 days of storage at 12.5 and 3°C. Weight loss was similar for all cultivars at both temperatures, but it was much less when pods were stored in bags compared to boxes. Percent electrolyte leakage was similar for all cultivars before storage. `Blondy' displayed the most severe chilling injury after 8 days of storage at 3C while `Emerald' had few symptoms of chilling injury. After 8 days of storage, all cultivars except `Emerald' had increased electrolyte leakage. These results indicate that okra pods have increased membrane permeability with chilling injury, and the degree of chilling injury may differ with cultivar.


2003 ◽  
Vol 13 (2) ◽  
pp. 267-272 ◽  
Author(s):  
Charles F. Forney

High-quality cranberry (Vaccinium macrocarpon) fruit are required to fulfil the growing markets for fresh fruit. Storage losses of fresh cranberries are primarily the result of decay and physiological breakdown. Maximizing quality and storage life of fresh cranberries starts in the field with good cultural practices. Proper fertility, pest management, pruning, and sanitation all contribute to the quality and longevity of the fruit. Mechanical damage in the form of bruising must be minimized during harvesting and postharvest handling, including storage, grading, and packaging. In addition, water-harvested fruit should be removed promptly from the bog water. Following harvest, fruit should be cooled quickly to an optimum storage temperature of between 2 and 5 °C (35.6 and 41.0 °F). The development of improved handling, refined storage conditions, and new postharvest treatments hold promise to extend the storage life of fresh cranberries.


1992 ◽  
Vol 32 (4) ◽  
pp. 529 ◽  
Author(s):  
A Klieber ◽  
RBH Wills

Asparagus (Asparagus officinalis L. cv. UC 157) was harvested in 3 seasons over 3 months and held at various temperatures, controlled atmospheres and relative humidities, and in dips, to optimise storage conditions. The optimum storage temperature was l.5�C, and precooling needed to be applied with the shortest possible delay after harvest. However, asparagus became more sensitive to chilling and lost 3 of 4 weeks of storage life and 2 of 5 days of shelf life at 20�C as the season progressed. Increasing the relative humidity from recommended 94 to 100% reduced weight loss but not quality, and wetting of spears during cooling did not reduce quality provided butt rots were controlled by dipping asparagus butts in saturated calcium hypochlorite. Continuous storage of spears with their butt in aqueous solutions reduced quality due to rotting, splitting and bending, but controlled atmospheres of 8-15% CO2/18-19% O2 extended storage life at l.5�C by 1 week and shelf life at 20�C by 2 days.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 520d-520
Author(s):  
Oswaldo Valor ◽  
Juan E Manzano

Mango fruits `Criollo de Bocado' harvested at the mature-green stage were treated with a hydrothermic treatment of 55 °C for 3 min and stored for 20 days to temperatures of 10 ± 2, 15 ± 2, and 28 ± 2 °C. A randomized design 2 × 3 × 4 with three replications was used. Physical parameters such as color (L*, a*, b*), firmnness, and fresh weight loss were studied. Results reported that mango fruits stored at 10.2 and 15.2 °C showed the highest firmness values. Skin color changed very fast during the first storage days, while pulp color required more time to achieve mature ripe color. Fresh weight loss tended to increase with storage time and with high storage temperature. The lowest storage temperture retarded softening in mango fruits and firmnness reached the highest values.


2019 ◽  
Vol 62 (3) ◽  
pp. 661-671 ◽  
Author(s):  
Jia Wu ◽  
Xiangyang Lin ◽  
Shengnan Lin ◽  
Paul Chen ◽  
Guangwei Huang ◽  
...  

Abstract. The effects of packaging and storage conditions on the moisture content and instrumental and sensory textural properties of raw and salty light roasted (SLR) California almonds were studied under different storage conditions. The controlled combinations included low, medium, and high temperatures and low and high relative humidity (RH). Almond samples were packaged in cartons or polyethylene (PE) bags with and without vacuum. Both absorption and desorption of moisture by almonds were observed during storage and were dependent on the packaging and storage conditions. In general, gradual changes were observed for samples with PE and vacuum PE packaging in most of the storage conditions, while the samples packed in cartons showed more dramatic changes because these unprotected samples were more vulnerable to seasonal changes in humidity. The SLR almonds showed consistent moisture gains, while the raw almonds tended to lose moisture content in most of the storage conditions. This may be attributed to the low initial moisture content of the SLR samples. All raw samples packed in cartons became softer over time. The softening tended to be enhanced by high storage humidity and temperature. The raw almonds packaged in PE bags were firmer than those packed in cartons but also became softer over time. The firmness of the SLR samples was generally lower than that of raw samples, probably because roasting reduced the density and mechanical strength of the kernels. The firmness of PE packaged SLR samples increased in uncontrolled storage conditions and in higher storage temperature and humidity conditions but decreased slightly in lower temperature and humidity conditions. Vacuum packaging did not affect the firmness much. Using PE packaging and maintaining the RH below 50% and the temperature below 25°C are effective in stabilizing both raw and processed almonds. Keywords: Almond, Firmness, Nonpareil, Packaging, Relative humidity, Sensory, Storage, Temperature, Texture.


1992 ◽  
Vol 61 (2) ◽  
pp. 461-467 ◽  
Author(s):  
Bo Ning ◽  
Yasutaka Kubo ◽  
Akitsugu Inaba ◽  
Reinosuke Nakamura

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 596f-596
Author(s):  
Shi-Ying Wang ◽  
William H. Carlson ◽  
Royal D. Heins

The effect of 6 weeks of storage at 2.5, 5.0, 7.5, 10.0, or 12.5°C in a glass greenhouse was determined on 11 vegetatively propagated annual species. Fresh weight (total, shoot, and root) and height of 30 plants per species in each storage temperature were measured at the end of storage. Another 30 plants were transplanted into 15-cm pots (three plants per pot) and grown under natural light in a 20°C glass greenhouse for 3 weeks. Three species showed chilling injury or died during storage at ≤7.5°C. Plant height and shoot fresh weight at the end of storage for most species increased linearly as storage temperature increased. Storage temperature did not affect the net increase in height or weight significantly during recovery growth, except for plants that exhibited chilling injury at the end of storage.


HortScience ◽  
1994 ◽  
Vol 29 (7) ◽  
pp. 737f-737
Author(s):  
P. Perkins-Veazie ◽  
J.K. Collins ◽  
J.R. Clark

The storage life of blackberry fruit is generally `2 to 3 days when stored at 1C. This study was done to determine the maximum storage life among erect blackberry cultivars, and to determine storage temperature effects on storage life. Shiny black fruit from `Navaho', `Arapaho', and `Shawnee' cultivars were stored at 2C, 5C, or 10C for 20, 14, and 7 days, respectively. At any temperature. only 10-20% of `Navaho' fruit had decay, while 30-50% of `Arapaho' and 40-70% of `Shawnee' fruit had decay. Weight loss was 3-5% depending on temperature and was not different among cultivars. Soluble solids concentration did not change during storage but titratable acidity decreased in all cultivars for fruit held at all temperatures. Anthocyanin content increased during storage in `Shawnee' and `Navaho' but not in `Arapaho' fruit. Results indicate that `Navaho' fruit have a longer shelflife than other blackberry cultivars.


Sign in / Sign up

Export Citation Format

Share Document