Optimisation of storage conditions for 'UC 157' asparagus

1992 ◽  
Vol 32 (4) ◽  
pp. 529 ◽  
Author(s):  
A Klieber ◽  
RBH Wills

Asparagus (Asparagus officinalis L. cv. UC 157) was harvested in 3 seasons over 3 months and held at various temperatures, controlled atmospheres and relative humidities, and in dips, to optimise storage conditions. The optimum storage temperature was l.5�C, and precooling needed to be applied with the shortest possible delay after harvest. However, asparagus became more sensitive to chilling and lost 3 of 4 weeks of storage life and 2 of 5 days of shelf life at 20�C as the season progressed. Increasing the relative humidity from recommended 94 to 100% reduced weight loss but not quality, and wetting of spears during cooling did not reduce quality provided butt rots were controlled by dipping asparagus butts in saturated calcium hypochlorite. Continuous storage of spears with their butt in aqueous solutions reduced quality due to rotting, splitting and bending, but controlled atmospheres of 8-15% CO2/18-19% O2 extended storage life at l.5�C by 1 week and shelf life at 20�C by 2 days.

HortScience ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 439-446 ◽  
Author(s):  
Charles F. Forney

Studies were conducted over three seasons to determine the relationship of temperature and humidity on the storage life of fresh cranberry (Vaccinium macrocarpon Aiton) fruit. Each year, cranberries harvested from four commercial bogs were stored at temperatures ranging from 0 to 10 °C in combination with relative humidities (RH) ranging from 75% to 98%. Fruit were stored under these conditions for up to 6 months and were evaluated monthly for marketability, decay, physiological breakdown, weight loss, and firmness immediately after removal and after an additional week at 20 °C. The percentage of marketable fruit declined substantially over time in all storage conditions with 41% to 57% becoming unmarketable after 2 months as a result of both decay and physiological breakdown. Relative humidity had a greater effect on fruit storage life than temperature and after 5 months, the amount of marketable fruit stored in high (98%) and medium (88%) RH was 71% and 31% less than that stored in low (75% to 82%) RH. Rates of fresh weight loss increased as RH in storage decreased and was 0.41%, 0.81%, and 0.86% per month in fruit stored in high, medium, and low RH, respectively. Fruit firmness was not significantly affected by RH. The effects of storage temperatures ranging from 0 to 7 °C on marketable fruit after 2 to 5 months of storage were not significant. Only fruit stored at 10 °C consistently had fewer marketable fruit when compared with fruit stored at lower temperatures. Storage temperature had no significant effect on decay incidence. However, physiological breakdown was greatest in fruit stored at 10 °C. Rates of fresh weight loss increased with storage temperature, ranging from 0.35% to 1.17% per month for fruit stored at 0 to 10 °C, respectively. Contrary to previous reports, no evidence of chilling injury was found in cranberry fruit stored at 0 °C. Results suggest that cranberry fruit should be stored at 0 to 7 °C and 75% to 82% RH to retain marketable fruit.


1969 ◽  
Vol 74 (2) ◽  
pp. 189-195
Author(s):  
Guillermo Fornaris-Rullán ◽  
Rubén Guadalupe-Luna ◽  
Carmen Chao de Báez ◽  
Noemí Díaz

A study was conducted on 2 storage temperatures (10.6° and 13° C), 4 storage intervals (1, 2, 3 and 4 weeks) and 2 market temperatures (20° C or 27° C) to assess differences in shelf-life and some quality components of Keitt mango, Mangifera indica L. Fruit exposed to the longer storage intervals showed a significant decrease in ripening time after storage under market conditions up to 4 days. This is also true for those stored at 13° C as compared to those stored at 10.6° C, with a 2.64-day period difference. The higher storage temperature caused some increase in anthracnose and stem-end rot. The longer the storage interval, or the ripening time after storage under market conditions, the greater was the final weight loss.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1050C-1050
Author(s):  
Charles F. Forney ◽  
Stephanie Bishop ◽  
Michele Elliot ◽  
Vivian Agar

Extending the storage life of fresh cranberries (Vaccinium macrocarpon Ait.) requires an optimum storage environment to minimize decay and physiological breakdown (PB). To assess the effects of relative humidity (RH) and temperature on storage life, cranberry fruit from four bogs were stored over calcium nitrate, sodium chloride, or potassium nitrate salts, which maintained RH at 75%, 88%, and 98%, respectively. Containers at each RH were held at 0, 3, 5, 7, or 10 °C and fruit quality was evaluated monthly for 6 months. Both decay and PB increased with increasing RH in storage. After 6 months, 32%, 38%, and 54% of fruit were decayed and 28%, 31%, and 36% developed PB when stored in 75%, 88%, and 98% RH, respectively. The effects of RH continued to be apparent after fruit were removed from storage, graded, and held for 7 days at 20 °C. The decay of graded fruit after 4 months of storage in 75%, 88%, or 98% RH was 10%, 13%, and 31%, respectively, while PB was 12%, 12%, and 17%, respectively. Fresh weight loss decreased as RH increased averaging 1.9%, 1.4%, and 0.7% per month for storage in 75%, 88%, and 98% RH, respectively. Fruit firmness was not affected by RH. Storage temperature had little effect on decay. However, PB was greatest in fruit stored at 10 °C, encompassing 55% of fruit after 5 months of storage. When graded fruit were held an additional 7 days at 20 °C, decay and PB were greater in fruit previously stored at 0 or 3 °C than at 5, 7, or 10 °C. Fresh weight loss increased as storage temperature increased, averaging 0.8%, 1.0%, 1.3%, 1.7%, and 1.9% per month at 0, 3, 5, 7, and 10 °C, respectively. Fruit firmness decreased during storage, but was not affected by storage temperature. To maximize storage and shelf life, cranberry fruit should be stored in a RH of about 75% at 5 °C.


2019 ◽  
Vol 8 (1) ◽  
pp. 138
Author(s):  
Chyntia Wulandari Eka Saputri ◽  
I. A. Rina Pratiwi Pudja ◽  
Pande Ketut Diah Kencana

Tujuan dari penelitian ini adalah untuk menentukan waktu perlakuan optimal dan suhu penyimpanan dingin untuk mutu kubis bunga. Penelitian ini menggunakan rancangan acak lengkap (RAL) yang terdiri dari dua faktor, faktor pertama adalah suhu yang digunakan dan faktor kedua adalah waktu selama show case. Faktor pertama terdiri dari dua level, yaitu (P1): show case temperature 8oC, dan (P2): show case temperature 15oC dan tambah kontrol (P0). Faktor kedua terdiri dari empat level, yaitu (A0): penyimpanan selama 0 jam, (A1): penyimpanan selama 12 jam, (A2): penyimpanan selama 16 jam, (A3): penyimpanan selama 20 jam dan diulang untuk 3 kali ulangan. Kubis bunga sebagai kontrol disimpan pada suhu kamar (28 ± 1 ?). Parameter kualitas yang diamati dalam penelitian ini termasuk penurunan berat badan, tingkat konsumsi O2, warna (warna berbeda), uji organoleptik termasuk umur simpan dan tingkat kerusakan. Hasil penelitian menunjukkan parameter penurunan susut bobot, laju konsumsi O2, warna, umur simpan, tingkat kerusakan pada suhu perlakuan suhu terbaik adalah suhu 8 ? dan waktu penyimpanan 20 jam (P1A3).Kata kunci: kembang kol, waktu penyimpanan, suhu penyimpanan dingin   The purpose of this study was to determine the optimal treatment time and cold storage temperature for the quality of cabbage flowers. This study uses a completely randomized design (CRD) consisting of two factors, the first factor is the temperature used and the second factor is the time during the showcase. The first factor consists of two levels, namely (P1): showcase temperature of 8oC, and (P2): showcase temperature of 15oC and added a control (P0). The second factor consists of four levels, namely (A0): storage for 0 hours, (A1): storage for 12 hours, (A2): storage for 16 hours, (A3): storage for 20 hours and repeated for 3 replications. Flower cabbage as control was stored at room temperature (28 ± 1 ?). The quality parameters observed in this study included weight loss, O2 consumption rate, color (color different), organoleptic tests including shelf life and damage level. The results showed the parameters of weight loss, O2 consumption rate, color, shelf life, damage rate at the best temperature of 8 ? and storage time of 20 hours (P1A3). Keywords: cauliflower, storage time, cold storage temperature


1990 ◽  
Vol 30 (5) ◽  
pp. 693 ◽  
Author(s):  
ME Edwards ◽  
RM Blennerhassett

Three trials were undertaken to study storage conditions and handling procedures required to maximise the postharvest storage life of honeydew melons (Cucumis melo L. var. inodorus Naud.).Honeydew melons treated with chlorine (1000 mg/L), benomyl (250 mg/L) + guazatine (500 mg/L), shrink wrap (17 ym Cryovac XDR film), Semperfresh, wax, or combinations of these treatments were stored at 4 or 8�C, for 4 or 6 weeks. Benomyl plus guazatine reduced the development of storage rots associated with Alternaria and Fusarium spp. The use of shrink wrap and wax reduced water loss by melons but increased fungal infection in some cases. Shrink wrapping combined with the fungicide treatment effectively reduced the incidence of fungal breakdown in the storage period for up to 4 weeks. Wax coating with full strength Citruseal wax caused anaerobic tissue breakdown. Melons were affected by chilling injury at 4�C. Control of bacterial rots with benomyl + guazatine or with chlorine was variable. Semperfresh did not reduce the incidence of fungal breakdown or water loss from the melons. The results indicate that storage of honeydew melons for 4 weeks at 8�C by pretreating with fungicide is possible but the melons soften and rot after 6 weeks, making them unsaleable. Four weeks should be adequate to allow for sea freighting of honeydew melons to markets in South East Asia. Further research is required to determine the optimum storage temperature for honeydew melons.


2004 ◽  
Vol 10 (2) ◽  
pp. 73-77 ◽  
Author(s):  
K. Perez ◽  
J. Mercado ◽  
H. Soto-Valdez

The effect of storage temperature on the shelf life, weight loss, respiration rate and ethylene production of Hass avocado (Persea americana Mill) was studied. Two batches of green mature avocado fruits, classified as ‘‘super extra’’ were stored at 10 and 20 C (first batch) and at 7 and 25 C (second batch). The avocado shelf lives were 22, 8, 32 and 6 days at 10, 20, 7 and 25 C, respectively. Based on the data of the first assay Q10 was calculated as 2.75, with this value the predicted shelf life at 7 and 25 C were 29.8 and 4.8 days, respectively. That meant shelf life was underestimated 7 and 20% at 7 and 25 C, respectively. Weight loss was linear at both the storage temperatures, it was 4.3% in fruits at 20 C for 8 days and 3.0% at 10 C for 22 days. The maximum CO2 production at 20 C was reached during the second day of storage, while at 10 C it was reached at the 17th day (176.17 15.98 and 74.73 7.32 mL/kg h, respectively). The maximum ethylene production at 20 C was reached the second day of storage, and at 10 C the 6th day (239.06 54.55 and 28.00 8.12 mL/kg h, respectively).


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 185
Author(s):  
Jing Du ◽  
Yingxue Lin ◽  
Yuan Gao ◽  
Yanyan Tian ◽  
Jixiang Zhang ◽  
...  

Processed unhusked rice is prone to mildew during storage. In this study, the storage conditions were simulated at temperatures of 20, 30, and 35 °C and a relative humidity of 40%, 60% and 80%, respectively. The water, fatty acid, and total starch content and the peak viscosity, mold colony number, protein secondary structure, and spatial structure of rice were monitored in order to propose the critical point of mildew during storage. In the process of rice from lively to moldy, the water content, fatty acid contents and the peak viscosity were increased. The total starch content decreased and then showed a slow increasing trend, while the microstructure of the powder particles changed from smooth and complete to loosen and hollow. With the increase in storage time, the vibration of the amide Ⅰ band of the rice samples decreased slightly, indicating that the total contents of β-fold, β-turn, α-helix, and random curl of the rice protein also changed. PCA (Principal Component Analysis) analysis showed that rice mildew index was closely related to temperature and humidity during storage. In our investigation, the best and most suitable temperature and relative humidity for rice storge is 20 °C and 40%, respectively. These results suggested that temperature and environmental humidity are vital factors affecting the physicochemical properties and nutrient changes, which provides a theoretical basis for the early warning of rice mildew during storage.


2022 ◽  
Vol 52 (6) ◽  
Author(s):  
Renar João Bender ◽  
Jeffrey Karl Brecht ◽  
Elizabeth Amory Baldwin

ABSTRACT: Mango flavor is dependent on cultivar characteristics and postharvest handling procedures. Mangoes harvested with the ripening metabolism initiated develop better flavor than mangoes harvested at the mature-green stage. Different cultivars were harvested at both ripeness stages and evaluated to determine the effect of fruit ripeness, storage temperature and atmosphere on the volatiles present in aroma profiles. Mangoes of the cultivars Haden, Keitt and Tommy Atkins at distinct ripeness stages were stored in controlled atmospheres (CA) with 2, 5 or 21 kPa O2 plus 0, 10 or 25 kPa CO2 at 5, 8, 12 or 15 °C. Terpene concentrations of mangoes stored in air were higher than the concentrations in mangoes stored in CA. The sesquiterpene α-copaene did not present recognizable peaks in almost all elusion sequences. The same result was observed with the monoterpene β-pinene in cv. Haden and cv. Keitt mangoes while in ‘Tommy Atkins’ fruit β-pinene concentrations were below 1.06 µL.L-1. Ethanol and acetaldehyde concentrations were significantly higher in mangoes from 2 kPa O2 storage than those from air storage or the other CA treatments. Terpene synthesis in air or CA storage in all cultivars varied significantly, preventing generalizations as to what storage conditions favor or limit aroma components elution.


2019 ◽  
Vol 62 (3) ◽  
pp. 661-671 ◽  
Author(s):  
Jia Wu ◽  
Xiangyang Lin ◽  
Shengnan Lin ◽  
Paul Chen ◽  
Guangwei Huang ◽  
...  

Abstract. The effects of packaging and storage conditions on the moisture content and instrumental and sensory textural properties of raw and salty light roasted (SLR) California almonds were studied under different storage conditions. The controlled combinations included low, medium, and high temperatures and low and high relative humidity (RH). Almond samples were packaged in cartons or polyethylene (PE) bags with and without vacuum. Both absorption and desorption of moisture by almonds were observed during storage and were dependent on the packaging and storage conditions. In general, gradual changes were observed for samples with PE and vacuum PE packaging in most of the storage conditions, while the samples packed in cartons showed more dramatic changes because these unprotected samples were more vulnerable to seasonal changes in humidity. The SLR almonds showed consistent moisture gains, while the raw almonds tended to lose moisture content in most of the storage conditions. This may be attributed to the low initial moisture content of the SLR samples. All raw samples packed in cartons became softer over time. The softening tended to be enhanced by high storage humidity and temperature. The raw almonds packaged in PE bags were firmer than those packed in cartons but also became softer over time. The firmness of the SLR samples was generally lower than that of raw samples, probably because roasting reduced the density and mechanical strength of the kernels. The firmness of PE packaged SLR samples increased in uncontrolled storage conditions and in higher storage temperature and humidity conditions but decreased slightly in lower temperature and humidity conditions. Vacuum packaging did not affect the firmness much. Using PE packaging and maintaining the RH below 50% and the temperature below 25°C are effective in stabilizing both raw and processed almonds. Keywords: Almond, Firmness, Nonpareil, Packaging, Relative humidity, Sensory, Storage, Temperature, Texture.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1023
Author(s):  
Olaniyi Amos Fawole ◽  
Shannon Claudia Riva ◽  
Umezuruike Linus Opara

The effect of six edible coatings were investigated on the ability to alleviate shrivel and extend shelf life of plums. Fruit were subjected to a simulated shipping period (−0.5 ± 2 °C and 90 ± 5% relative humidity (RH)) for five weeks and a subsequent shelf life period (20 ± 2 °C and 80 ± 5% RH) for 20 d. Overall, the study showed that it is possible to alleviate shrivel and also extend shelf life of plum (‘African Delight™’) at export and shelf life conditions. Amongst the edible coatings investigated, the findings in fruit coated with gum arabic and the commercial products were comparable and promising for postharvest preservation of the investigated plum cultivar. The coatings showed a moderate delay of fruit ripening, significantly reduced weight loss and shrivel development, allowing for the export of fruit over a long distance (five weeks) and up to 20 d of shelf life.


Sign in / Sign up

Export Citation Format

Share Document