scholarly journals Mustard (Sinapis alba) Seed Meal Suppresses Weeds in Container-grown Ornamentals

HortScience ◽  
2008 ◽  
Vol 43 (3) ◽  
pp. 800-803 ◽  
Author(s):  
Rick A. Boydston ◽  
Treva Anderson ◽  
Steven F. Vaughn

Mustard seed meal is a byproduct of mustard (Sinapis alba L.) grown for oil production. Developing new uses for mustard seed meal could increase the profitability of growing mustard. Seed meal of mustard, var. ‘IdaGold’, was applied to the soil surface to evaluate its effect on several common weeds in container-grown ornamentals. Mustard seed meal applied to the soil surface of containers at 113, 225, and 450 g·m−2 reduced the number of annual bluegrass (Poa annua L.) seedlings by 60%, 86%, and 98%, respectively, and the number of common chickweed (Stellaria media L.) seedlings by 61%, 74%, and 73%, respectively, at 8 weeks after treatment (WAT). Mustard seed meal applied to the soil surface after transplanting Rosa L. hybrid, var. ‘Red Sunblaze’, Phlox paniculata L., var. ‘Franz Schubert’, and Coreopsis auriculata L., var. ‘Nana’ did not injure or affect the flowering or growth of ornamentals. In separate experiments, mustard seed meal applied at 225 g·m−2 to the soil surface reduced the number of emerged seedlings and fresh weight of creeping woodsorrel (Oxalis corniculata) 90% and 95%, respectively, at 8 WAT. Mustard seed meal applied at 450 g·m−2 completely prevented woodsorrel emergence at 8 WAT. Mustard seed meal applied postemergence to established liverwort (Marchantia polymorpha L.) at 113, 225, and 450 g·m−2 did not injure container-grown Pulsatilla vulgaris Mill., var. ‘Heiler Hybrids Mixed’ up to 6 WAT and controlled liverwort from 83% to 97% at 6 WAT. Weed suppression with mustard seed meal generally increased as rate increased from 113 to 450 g·m−2. Mustard seed meal may be useful for selective suppression of annual weeds when applied to the soil surface of container-grown transplanted ornamentals.

Weed Science ◽  
2011 ◽  
Vol 59 (4) ◽  
pp. 546-552 ◽  
Author(s):  
Rick A. Boydston ◽  
Matt J. Morra ◽  
Vladimir Borek ◽  
Lydia Clayton ◽  
Steven F. Vaughn

Weed control in organic onion production is often difficult and expensive, requiring numerous cultivations and extensive hand weeding. Onion safety and weed control with mustard seed meal (MSM) derived from Sinapis alba was evaluated in greenhouse and field trials. MSM applied at 110, 220, and 440 g m−2 severely injured onions and reduced onion stand by 25% or more when applied from planting to the one-leaf stage of onions in greenhouse trials. MSM derived from mustard cultivars ‘IdaGold’ and ‘AC Pennant’ reduced plant dry weight of redroot pigweed with an effective dose that provided 90% weed control (ED90) of 14.5 and 3.2 g m−2, respectively, in greenhouse trials, whereas the ED90 of MSM from a low-glucosinolate cultivar ‘00RN29D10’ was 128 g m−2, suggesting that glucosinolate content and ionic thiocyanate (SCN−) production contribute to phytotoxicity of MSM. In field trials, weed emergence, onion injury, and onion yield were recorded following single or three sequential applications of MSM from 1.1 to 4.5 MT ha−1 beginning at the two-leaf stage of onions in 2008, 2009, and 2010. By 8 wk after treatment (WAT), onion injury following MSM sequential applications was 10% or less in all 3 yr. Combined over 2008 and 2009, 48 and 68% fewer weeds emerged 3 WAT with MSM at 2.2 and 4.5 MT ha−1, respectively. In 2010, MSM at 2.2 and 4.5 MT ha−1 reduced the number of weeds emerged 4 WAT by 91 and 76%, respectively. MSM treatment did not significantly affect onion yield or size in 2008 and 2009, but in 2010 onion total yield was reduced by 29% by three sequential applications of MSM at 2.2 MT ha−1. MSM has potential to be used as a weed-suppressive amendment in organic production systems, but the risk of crop injury is substantial.


2017 ◽  
Vol 53 (No. 3) ◽  
pp. 187-193 ◽  
Author(s):  
Kunz Christoph ◽  
Sturm Dominic J ◽  
Sökefeld Markus ◽  
Gerhards Roland

Field experiments were conducted at two locations in 2014–2015 and 2015–2016 to investigate the weed suppressive ability of cover crop mulches in sugar beets. Three cover crops and two cover crop mixtures were tested in all four experiments. Weed densities ranged from 2 up to 210 plants/m<sup>2</sup> in Chenopodium album L. and Stellaria media (L.) Vill. as predominant species. Sinapis alba grew significantly faster than Vicia sativa, Raphanus sativus var. niger, and both cover crop mixtures. Sinapis alba, Vicia sativa, Raphanus sativus var. niger reduced weed density by 57, 22, and 15% across all locations, respectively. A mixture of seven different cover crops reduced weed emergence by 64% compared to the control plot without cover crop mulch. Early sugar beet growth was enhanced by all mulch treatments in 2015 and decelerated in 2016.


HortScience ◽  
2021 ◽  
Vol 56 (2) ◽  
pp. 254-260
Author(s):  
Asmita Nagila ◽  
Brian J. Schutte ◽  
Soum Sanogo ◽  
Omololu John Idowu

When applied before crop emergence, soil amendments with mustard seed meal (MSM) control some weeds and soilborne pathogens. MSM applications after crop emergence (herein “postemergence applications”) might be useful components of agricultural pest management programs, but research on postemergence applications of MSM is limited. The overall objective of this investigation was to develop a method for postemergence application of MSM that does not cause irrecoverable injury or yield loss in chile pepper (Capsicum annuum). To accomplish this objective, we conducted a sequence of studies that evaluated different MSM rates and application methods in the greenhouse and field. For the greenhouse study, we measured chile plant photosynthetic and growth responses to MSM applied postemergence on the soil surface or incorporated into soil. For the field study, we determined chile pepper fruit yield responses to MSM applied postemergence using a technique based on the method developed in greenhouse, and we confirmed that the MSM rates used in our study (4400 kg·ha−1 and 2200 kg·ha−1) inhibited the emergence of the weed Palmer amaranth (Amaranthus palmeri) and the growth of the pathogen Phytophthora capsici, which are common problems in chile pepper production in New Mexico. Greenhouse study results indicated that MSM at 4400 kg·ha−1 spread on the soil surface caused irrecoverable injury to chile pepper plants; however, chile pepper plants were not permanently injured by the following three treatments: 1) MSM at 4400 kg·ha−1 incorporated into soil, 2) MSM at 2200 kg·ha−1 spread on the soil surface, and 3) MSM at 2200 kg·ha−1 incorporated into soil. For the field study, postemergence, soil-incorporated applications of MSM at 4400 kg·ha−1 suppressed emergence of Palmer amaranth by 89% and reduced mycelial growth of Phytophthora capsica by 96%. Soil-incorporated applications of MSM at 2200 kg·ha−1 suppressed emergence of Palmer amaranth by 41.5% and reduced mycelial growth of Phytophthora capsica by 71%. Postemergence soil-incorporated applications of MSM did not reduce chile pepper yield compared with the control. The results of this study indicated that MSM applied after crop emergence and incorporated into soil can be a component of pest management programs for chile pepper.


2020 ◽  
Vol 73 (2) ◽  
Author(s):  
Andrzej Borowy ◽  
Magdalena Kapłan

A field experiment was carried out in Felin Experimental Farm (2019) in Lublin region (Poland) in order to determine the effect of white mustard (<em>Sinapis alba </em>L.) seed meal (MSM) on weed density as well as on borage plant growth and yield under field cultivation. MSM scattered on soil surface at rates of 2 and 3 t ha<sup>−1</sup> when weeds emerged and a day before emergence of borage did not affect the number of borage seedlings but caused transient growth stunting and chlorosis of cotyledons and first leaves. However, final plant height, yield of above-ground parts, mericarp dimensions and weight, content of oil in mericarps, and oil composition were not significantly affected by MSM treatment. At harvest, MSM had decomposed completely, supplying considerable amounts of phosphorus, potassium, and magnesium to the soil, but did not affect its pH or organic matter content. MSM suppressed weed density by 37%–46% during the period of highest sensivity of borage to weed competition. Among dominant weeds occurring in the experiment, <em>Gnaphalium uliginosum </em>and <em>Stellaria media </em>were the most susceptible to MSM, while <em>Amaranthus retroflexus </em>and <em>Galinsoga ciliata </em>were mildly susceptible, <em>Echinochloa cruss-galli </em>and <em>Poa annua </em>were less susceptible, and the least susceptible species was <em>Capsella bursa-pastoris</em>. Obtained results show that MSM may have value for early season weed suppression in borage cultivation.


2018 ◽  
Vol 10 (2) ◽  
pp. 48 ◽  
Author(s):  
Rick A. Boydston ◽  
Steven F. Vaughn ◽  
Charles L. Webber III ◽  
Bernardo Chaves-Cordoba

Mustard seed meal (MSM) derived from Sinapis alba controls weeds for several weeks following application to soil, but also has potential to injure the planted crop. Producers of certified organic potatoes typically utilize a combination of cover crops, soil hilling, harrowing, and cultivation for weed control. Once the potato canopy nears row closure, most late emerging weeds are suppressed by the dense potato canopy. MSM may have value for early season weed suppression in potato, but has not been previously tested. Our objectives were to determine the weed control efficacy and potato tolerance to MSM. We evaluated response of potatoes and weeds to MSM applied at 1.1, 2.2, and 4.5 MT ha-1 applied in a band on the potato hill just after a shallow harrowing and prior to potato emergence as part of an integrated weed management program in potatoes. MSM applied at 2.2 and 4.5 MT ha-1 reduced early season grass and broadleaf weed density 73 to 99% and 54 to 98%, respectively, in potato and reduced late season broadleaf weed biomass 71 to 94% in all three years tested. Early season grass weed density in potato was reduced by MSM at 2.2 and 4.5 MT ha-1. Late season grass weed biomass was reduced by the highest rate of 4.5 MT ha-1. MSM at 4.5 MT ha-1 caused minor injury to potato (3 to 15%) at 3 weeks after emergence, but did not reduce total tuber yields or percentage of US No.1 tubers. MSM could be a component of an integrated weed control program in potato.


2015 ◽  
Vol 25 (2) ◽  
pp. 192-202 ◽  
Author(s):  
Susan L.F. Meyer ◽  
Inga A. Zasada ◽  
Shannon M. Rupprecht ◽  
Mark J. VanGessel ◽  
Cerruti R.R. Hooks ◽  
...  

Mustard seed meals of indian mustard [InM (Brassica juncea)] and yellow mustard [YeM (Sinapis alba)], alone and combined, were tested for effects on tomato (Solanum lycopersicum) plants and for suppression of southern root-knot nematode [RKN (Meloidogyne incognita)] and weed populations. In the greenhouse, with all seed meal treatments applied at 0.25% total w/w soil, low tomato plant stands (up to 60% dying/dead) resulted from amendment with 3 YeM:1 InM, 1 YeM:1 InM, and YeM, applied right before transplant. Compared with untreated controls, low numbers of RKN eggs per gram root were consistently recorded from amendment with 3 YeM:1 InM. In a 2012 field study, incorporation of 1 YeM:1 InM (1700 lb/acre) resulted in lower tomato root biomass than fertilizer application (504 lb/acre), YeM or InM (each 1700 lb/acre). All treatments were applied with added fertilizer to achieve 100–102 lb/acre nitrogen, 7.4 lb/acre phosphorus, 74.7 lb/acre potassium, 6.0 lb/acre sulfur, and 1.0 lb/acre boron. The lowest numbers of RKN eggs per gram root (harvest 2012) were collected from plots amended with InM (1700 lb/acre), YeM (850 lb/acre), and 3 YeM:1 InM (1700 lb/acre), but the numbers were not significantly different from fertilizer only (504 lb/acre) controls. Highest and lowest tomato yields (numbers of fruit) in 2012 were recorded from YeM (850 lb/acre) and 3 YeM:1 InM (1700 lb/acre) amendments, respectively. In 2013, there were no significant differences among treatments in eggs per gram root or in tomato yields. No mustard seed meal treatment affected weed populations. At the tested rates, YeM seed meal showed potential for use in tomato beds but results were inconsistent between years.


HortScience ◽  
2008 ◽  
Vol 43 (1) ◽  
pp. 191-195 ◽  
Author(s):  
Rick A. Boydston ◽  
Harold P. Collins ◽  
Steven F. Vaughn

This research evaluated the use of dried distiller grains with solubles (DDGS) as a soil amendment to suppress weeds in container-grown ornamentals. DDGS is a byproduct of ethanol produced from corn, and developing new uses for DDGS could increase the profitability of ethanol production. Adding DDGS to a commercial pine bark potting mix reduced emergence and growth of common chickweed (Stellaria media) at concentrations of 5% (by weight) or greater and annual bluegrass (Poa annua) at concentrations of 10% (by weight) or more. Herbicidal activity of DDGS was maintained in methanol-extracted DDGS. Rosa hybrid ‘Red Sunblaze’, Phlox paniculata ‘Franz Schubert’, and Coreopsis auriculata ‘Nana’ transplanted into potting soil amended with 20% by weight DDGS were severely stunted and nearly all plants died. Plants survived when transplanted into potting soil containing 10% DDGS by weight, but growth was greatly stunted and flowering of rose and coreopsis was reduced. Addition of 20% DDGS decreased the C:N ratio from 90:1 to 24:1 for the potting mix and from 23:1 to 10:1 for a soil. The decrease in C:N ratio resulted in a twofold increase in microbial respiration at 3 d and 14 d of incubation for both the potting mix and soil. As a result of the phytotoxicity observed on ornamentals transplanted into DDGS-amended potting soil, subsequent studies evaluated surface-applied DDGS to suppress weeds. DDGS applied at 400 g·m−2 or less to the soil surface at transplanting did not reduce emergence or growth of common chickweed or annual bluegrass. DDGS applied at 800 and 1600 g·m−2 to the surface of transplanted ornamentals reduced number of annual bluegrass by 40% and 57% and common chickweed by 33% and 58%, respectively, without injury to transplanted ornamentals. DDGS may be useful for reducing weed emergence and growth in container-grown ornamentals applied to the soil surface at transplanting.


2013 ◽  
Vol 40 (7) ◽  
pp. 543-552 ◽  
Author(s):  
Runping Yang ◽  
Qiang Zhou ◽  
Chunmiao Wen ◽  
Jian Hu ◽  
Hengjin Li ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document