scholarly journals Evaluating Mustard Seed Meal for Weed Suppression in Borage (Borago officinalis L.) Cultivation

2020 ◽  
Vol 73 (2) ◽  
Author(s):  
Andrzej Borowy ◽  
Magdalena Kapłan

A field experiment was carried out in Felin Experimental Farm (2019) in Lublin region (Poland) in order to determine the effect of white mustard (<em>Sinapis alba </em>L.) seed meal (MSM) on weed density as well as on borage plant growth and yield under field cultivation. MSM scattered on soil surface at rates of 2 and 3 t ha<sup>−1</sup> when weeds emerged and a day before emergence of borage did not affect the number of borage seedlings but caused transient growth stunting and chlorosis of cotyledons and first leaves. However, final plant height, yield of above-ground parts, mericarp dimensions and weight, content of oil in mericarps, and oil composition were not significantly affected by MSM treatment. At harvest, MSM had decomposed completely, supplying considerable amounts of phosphorus, potassium, and magnesium to the soil, but did not affect its pH or organic matter content. MSM suppressed weed density by 37%–46% during the period of highest sensivity of borage to weed competition. Among dominant weeds occurring in the experiment, <em>Gnaphalium uliginosum </em>and <em>Stellaria media </em>were the most susceptible to MSM, while <em>Amaranthus retroflexus </em>and <em>Galinsoga ciliata </em>were mildly susceptible, <em>Echinochloa cruss-galli </em>and <em>Poa annua </em>were less susceptible, and the least susceptible species was <em>Capsella bursa-pastoris</em>. Obtained results show that MSM may have value for early season weed suppression in borage cultivation.

2018 ◽  
Vol 10 (2) ◽  
pp. 48 ◽  
Author(s):  
Rick A. Boydston ◽  
Steven F. Vaughn ◽  
Charles L. Webber III ◽  
Bernardo Chaves-Cordoba

Mustard seed meal (MSM) derived from Sinapis alba controls weeds for several weeks following application to soil, but also has potential to injure the planted crop. Producers of certified organic potatoes typically utilize a combination of cover crops, soil hilling, harrowing, and cultivation for weed control. Once the potato canopy nears row closure, most late emerging weeds are suppressed by the dense potato canopy. MSM may have value for early season weed suppression in potato, but has not been previously tested. Our objectives were to determine the weed control efficacy and potato tolerance to MSM. We evaluated response of potatoes and weeds to MSM applied at 1.1, 2.2, and 4.5 MT ha-1 applied in a band on the potato hill just after a shallow harrowing and prior to potato emergence as part of an integrated weed management program in potatoes. MSM applied at 2.2 and 4.5 MT ha-1 reduced early season grass and broadleaf weed density 73 to 99% and 54 to 98%, respectively, in potato and reduced late season broadleaf weed biomass 71 to 94% in all three years tested. Early season grass weed density in potato was reduced by MSM at 2.2 and 4.5 MT ha-1. Late season grass weed biomass was reduced by the highest rate of 4.5 MT ha-1. MSM at 4.5 MT ha-1 caused minor injury to potato (3 to 15%) at 3 weeks after emergence, but did not reduce total tuber yields or percentage of US No.1 tubers. MSM could be a component of an integrated weed control program in potato.


HortScience ◽  
2008 ◽  
Vol 43 (3) ◽  
pp. 800-803 ◽  
Author(s):  
Rick A. Boydston ◽  
Treva Anderson ◽  
Steven F. Vaughn

Mustard seed meal is a byproduct of mustard (Sinapis alba L.) grown for oil production. Developing new uses for mustard seed meal could increase the profitability of growing mustard. Seed meal of mustard, var. ‘IdaGold’, was applied to the soil surface to evaluate its effect on several common weeds in container-grown ornamentals. Mustard seed meal applied to the soil surface of containers at 113, 225, and 450 g·m−2 reduced the number of annual bluegrass (Poa annua L.) seedlings by 60%, 86%, and 98%, respectively, and the number of common chickweed (Stellaria media L.) seedlings by 61%, 74%, and 73%, respectively, at 8 weeks after treatment (WAT). Mustard seed meal applied to the soil surface after transplanting Rosa L. hybrid, var. ‘Red Sunblaze’, Phlox paniculata L., var. ‘Franz Schubert’, and Coreopsis auriculata L., var. ‘Nana’ did not injure or affect the flowering or growth of ornamentals. In separate experiments, mustard seed meal applied at 225 g·m−2 to the soil surface reduced the number of emerged seedlings and fresh weight of creeping woodsorrel (Oxalis corniculata) 90% and 95%, respectively, at 8 WAT. Mustard seed meal applied at 450 g·m−2 completely prevented woodsorrel emergence at 8 WAT. Mustard seed meal applied postemergence to established liverwort (Marchantia polymorpha L.) at 113, 225, and 450 g·m−2 did not injure container-grown Pulsatilla vulgaris Mill., var. ‘Heiler Hybrids Mixed’ up to 6 WAT and controlled liverwort from 83% to 97% at 6 WAT. Weed suppression with mustard seed meal generally increased as rate increased from 113 to 450 g·m−2. Mustard seed meal may be useful for selective suppression of annual weeds when applied to the soil surface of container-grown transplanted ornamentals.


HortScience ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 445-450 ◽  
Author(s):  
Jialin Yu ◽  
Nathan S. Boyd ◽  
Zhengfei Guan

Many strawberry growers in Florida relay crop vegetables with strawberries or grow multiple crops on the same plastic mulch. The practice can reduce the overall input costs per crop but weed management can be problematic. Field experiments designed as a split plot were conducted in Balm and Dover, FL over two successive strawberry-growing seasons from Oct. 2014 to Mar. 2015 (year 1) and Oct. 2015 to Mar. 2016 (year 2) and two successive muskmelon-growing seasons from March to July 2015 (year 1) and March to July 2016 (year 2). The objectives were to examine the effect of summer fallow programs and the presence or absence of a relay-crop on weed density and strawberry (Fragaria ×ananassa Duchesne) and muskmelon (Cucumis melo L.) yields. Summer fallow programs included leaving the plastic mulch in place and reusing it in year 2, a sunn hemp (Crotalaria juncea L.) cover crop, or a conventional chemical fallow. Relay cropping muskmelon with strawberries had no effect on strawberry yield. Summer fallow programs had no effect on muskmelon growth and yield in Balm and Dover, as well as strawberry growth and yield in Balm. In Dover, the plastic mulch summer fallow had 22% to 34% lower berry yield in year 2 compared with cover crop and chemical fallow, respectively. In year 2, relay-cropping was more effective in reducing total weed density compared with strawberry monoculture in Dover but not in Balm. In year 2 in Dover, averaged overall summer fallow programs, the total weed density was ≈3-fold less in relay-cropping than strawberry monoculture. Of all the summer fallow programs evaluated, leaving the plastic mulch in place combined with glyphosate was the most effective summer fallow program, whereas the conventional chemical fallow was the least effective at weed suppression. We conclude that relay cropping or double use of plastic mulch for successive strawberry crops are viable options for Florida strawberry growers.


2008 ◽  
Vol 18 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Guangyao Wang ◽  
Mathieu Ngouajio ◽  
Darryl D. Warncke

The effects of cover crops on nutrient cycling, weed suppression, and onion (Allium cepa) yield were evaluated under a muck soil with high organic matter in Michigan. Four brassica cover crops, including brown mustard (Brassica juncea ‘Common brown’), oilseed radish (Raphanus sativus ‘Daikon’), oriental mustard (B. juncea ‘Forge’), and yellow mustard (Sinapis alba ‘Tilney’), as well as sorghum sudangrass (Sorghum bicolor × S. sudanense ‘Honey Sweet’) produced similar amount of biomass and recycled similar amounts of nitrogen, phosphorus, and potassium. The brassica cover crop biomass contained more calcium, sulfur, and boron, but less magnesium, iron, manganese, copper, and zinc than sorghum sudangrass. However, soil fertility was generally similar regardless of whether a cover crop was used. This was mainly because the soil was sampled when most of the cover crop residue was not yet decomposed. Weed density during onion growth was reduced by all cover crops compared with the control with no cover crop, with yellow mustard treatment having the lowest weed density among the cover crops. Weed species composition was also significantly affected by the cover crops. Yellow mustard treatment had the lowest density of common purslane (Portulaca oleracea) and redroot pigweed (Amaranthus retroflexus), whereas sorghum sudangrass had the highest yellow nutsedge (Cyperus esculentus) density among all the treatments. However, weed suppression was not enough to eliminate normal control strategies. The brassica cover crops, especially oilseed radish and yellow mustard, increased onion stand count and marketable yield. These results suggest that brassica and sorghum sudangrass cover crops could provide multiple benefits if incorporated into short-term onion rotations under Michigan growing conditions.


2020 ◽  
Vol 23 (1) ◽  
pp. 47-58
Author(s):  
SS Tanu ◽  
P Biswas ◽  
S Ahmed ◽  
SC Samanta

A field experiment was conducted at Agronomy Field Laboratory, Patuakhali Science and Technology University, Dumki, Patuakhali from July 2018 to November 2018 to evaluate the effect of sunflower residues and herbicides on the yield and economic performance of transplanted Aman rice. Weed control methods tested were T1 = weedy check (Unweeded control), T2 = Weed-free check by hand weeding twice, T3 = Pendimethalin, T4 = Pretilachlor, T5 = Butachlor, T6 = Pyrazosulfuron ethyl, T7 = Bensulfuron methyl + Acetachlor, T8 = Bispyriback sodium, T9 = 2,4-D amine, T10 = MCPA, T11 = Sunflower residues, T12 = Sunflower residues + 100% Pyrazosulfuron ethyl, T13 = Sunflower residues + 75% Pyrazosulfuron ethyl, T14 = Sunflower residues + 50% Pyrazosulfuron ethyl. The experiment was laid out in a randomized complete block design with fourteen treatments replicated thrice. Weedy check registered significantly the highest total weed density (354.67 m-2) and total weed dry matter (51.81 g-2) while weed-free treatment by hand weeding twice recorded significantly the lowest total weed density (6.67 m-2) and total weed dry matter 0.49 g-2) . Weedy check produced the highest weed index (34.24%) and hand weeding produced the lowest. Among different herbicides applied alone, butachlor had the lowest total weed density (15 m-2) and total weed dry matter (6.43 g-2) after hand weeding. Hand weeding recorded the highest grain yield (5.14 t ha-1) which was statistically similar to pendimethalin, pretilachlor, butachlor, bensulfuron methyl + acetachlor and sunflower residues + 100% pyrazosulfuron ethyl. Higher grain yield was attributed to a higher number of panicle m-2, number of filled grains panicle-1 and 1000-grain weight. The highest gross margin (22955 Tk. ha-1) and benefit-cost ratio (1.32) were obtained from butachlor. Integration of sunflower residues with pyrazosulfuron ethyl produced effective weed suppression and satisfactory yield comparable to butachlor. Although the integration is less profitable than butachlor the farmers can use this technology as a feasible and environmentally sound approach in transplanted Aman rice field. Bangladesh Agron. J. 2020, 23(1): 47-58


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1326
Author(s):  
Calvin F. Glaspie ◽  
Eric A. L. Jones ◽  
Donald Penner ◽  
John A. Pawlak ◽  
Wesley J. Everman

Greenhouse studies were conducted to evaluate the effects of soil organic matter content and soil pH on initial and residual weed control with flumioxazin by planting selected weed species in various lab-made and field soils. Initial control was determined by planting weed seeds into various lab-made and field soils treated with flumioxazin (71 g ha−1). Seeds of Echinochloa crus-galli (barnyard grass), Setaria faberi (giant foxtail), Amaranthus retroflexus (redroot pigweed), and Abutilon theophrasti (velvetleaf) were incorporated into the top 1.3 cm of each soil at a density of 100 seeds per pot, respectively. Emerged plants were counted and removed in both treated and non-treated pots two weeks after planting and each following week for six weeks. Flumioxazin control was evaluated by calculating percent emergence of weeds in treated soils compared to the emergence of weeds in non-treated soils. Clay content was not found to affect initial flumioxazin control of any tested weed species. Control of A. theophrasti, E. crus-galli, and S. faberi was reduced as soil organic matter content increased. The control of A. retroflexus was not affected by organic matter. Soil pH below 6 reduced flumioxazin control of A. theophrasti, and S. faberi but did not affect the control of A. retroflexus and E. crus-galli. Flumioxazin residual control was determined by planting selected weed species in various lab-made and field soils 0, 2, 4, 6, and 8 weeks after treatment. Eight weeks after treatment, flumioxazin gave 0% control of A. theophrasti and S. faberi in all soils tested. Control of A. retroflexus and Chenopodium album (common lambsquarters) was 100% for the duration of the experiment, except when soil organic matter content was greater than 3% or the soil pH 7. Eight weeks after treatment, 0% control was only observed for common A. retroflexus and C. album in organic soil (soil organic matter > 80%) or when soil pH was above 7. Control of A. theophrasti and S. faberi decreased as soil organic matter content and soil pH increased. Similar results were observed when comparing lab-made soils to field soils; however, differences in control were observed between lab-made organic matter soils and field organic matter soils. Results indicate that flumioxazin can provide control ranging from 75–100% for two to six weeks on common weed species.


2010 ◽  
Vol 24 (4) ◽  
pp. 440-445 ◽  
Author(s):  
Daniel T. Earlywine ◽  
Reid J. Smeda ◽  
Travis C. Teuton ◽  
Carl E. Sams ◽  
Xi Xiong

Oriental mustard seed meal (MSM), a byproduct generated by pressing the seed for oil, exhibits herbicidal properties. In turfgrass, soil fumigants such as methyl bromide are used to control weeds prior to renovation of turf. Environmental concerns have resulted in deregistration of methyl bromide, prompting the need for alternatives. The objective of this research was to determine the effect of MSM on the establishment of selected turfgrass weeds as well as inhibitory effects on establishment of desirable turfgrasses. Greenhouse experiments were conducted in 2006 and 2007 at the University of Missouri. MSM was amended in soil at 0, 1,350 (low), 2,350 (medium), and 3,360 kg ha−1(high) concentrations. Weed species included annual bluegrass, large crabgrass, buckhorn plantain, white clover, and common chickweed. Turfgrass species included: Rembrandt tall fescue, Evening Shade perennial rye, and Riviera bermudagrass. All species were seeded into soil amended with MSM and either tarped or left untarped. All treatments were compared to dazomet (392 kg ha−1), a synthetic standard. Plant counts and biomass of all species were recorded 4 wk after seeding. Overall, tarped treatments suppressed weed emergence 27 to 50% more compared to untarped treatments, except for large crabgrass. High rates of MSM suppressed emergence of all weeds ≥ 63%. Compared to the untreated control, the density of buckhorn plantain, white clover, and common chickweed was reduced by ≥ 42% at low rates of MSM. Biomass of buckhorn plantain, annual bluegrass, common chickweed, white clover, and large crabgrass was reduced from 37 to 99% at high rates of MSM. MSM at high rates reduced stand counts of tall fescue and perennial ryegrass up to 81% and 77% respectively, compared to the untreated control. Regardless of MSM rates or tarping, suppression of common bermudagrass emergence did not exceed 30%; tarped treatments actually increased bermudagrass emergence by 22%. The biomass for tall fescue, perennial ryegrass, and bermudagrass was reduced by 85, 68, and 10%, respectively, at high rates of MSM. For tall fescue, MSM at all rates strongly suppressed seed germination by 7 d after planting (DAP) (up to 100%), with additional germination observed through 14 DAP, but not thereafter. In both trials, dazomet completely suppressed emergence of all weeds. MSM appears to suppress emergence and growth of a number of weeds common in turf, with potential selectivity for bermudagrass.


1990 ◽  
Vol 70 (4) ◽  
pp. 1215-1221 ◽  
Author(s):  
IRIS BITTERLICH ◽  
MAHESH K. UPADHYAYA

Field experiments were conducted in 1987 and 1988 to study the effect of lamb’s-quarters (Chenopodium album L.) interference on broccoli (Brassica oleracea L. var. botrytis ’Emperor’) growth and yield. Broccoli growth was initially affected by weed interference at 28–36 d after seeding. Generally, the negative effect of weed interference on broccoli growth increased with increasing weed density and time after seeding. Interference by 15 lamb’s-quarters plants m−2 reduced the biomass of broccoli plants by 71–73% compared to the weed-free control at 57–58 d after seeding. Weed density-crop yield relationship curves showed that one lamb’s-quarters plant m−2 decreased total yield by 18–20% and marketable yield by 22–37%. Lamb’s-quarters reduced the total yield per plot by decreasing the average head weight of broccoli. The number of heads per plot was not affected. Weed interference also reduced the weight of heads classified as marketable (> 10 cm across). However, in 1987 more heads failed to reach a marketable size which resulted in a much smaller marketable yield than in 1988.Key words: Brassica oleracea var. botrytis, broccoli, Chenopodium album L., weed density, weed interference, cole crop


2012 ◽  
Vol 4 (3) ◽  
pp. 70-75 ◽  
Author(s):  
Hossein GHAMARI ◽  
Goudarz AHMADVAND

Dry bean is one of the most important pulse crops in Iran. Field study was conducted in 2011 to evaluate effects of weed competition from a natural flora on growth and yield of dry bean (Phaseolus vulgaris L.). The treatments consisted of weed infestation and weed removal periods (10, 20, 30, 40 and 50 days) after crop emergence. Control plots kept weed-infested and weed-free throughout growing season. To assess the weed competition effect on crop characteristics, Richards, Gompertz and logistic equations were fitted to the data. The most abundant weed species were Chenopodium album and Amaranthus retroflexus. Increase in duration of weed interference decreased the stem height of dry bean. At the end of the growing season, dry bean was 20 cm taller in season-long weed-free treatment compared to the season-long weed-infested treatment. As the number of days of weed interference increased, a declining trend of LAI and number of pods was observed. The minimum number of pods was obtained in season-long weed-infested treatment (5.01 pods/plant). Weed interference during the whole growing season, caused a 60% reduction in yield. Considering 5% and 10% acceptable yield lost, the critical period of weed competition was determined from 20 to 68 and 23 to 55 days after planting (DAE), respectively.


Sign in / Sign up

Export Citation Format

Share Document