scholarly journals Weed suppression and crop yield in wheat after mustard seed meal aqueous extract application with reduced rate of isoproturon

Author(s):  
Manoj Kumar Singh ◽  
Saurabh Singh ◽  
Saroj Kumar Prasad
HortScience ◽  
2008 ◽  
Vol 43 (3) ◽  
pp. 800-803 ◽  
Author(s):  
Rick A. Boydston ◽  
Treva Anderson ◽  
Steven F. Vaughn

Mustard seed meal is a byproduct of mustard (Sinapis alba L.) grown for oil production. Developing new uses for mustard seed meal could increase the profitability of growing mustard. Seed meal of mustard, var. ‘IdaGold’, was applied to the soil surface to evaluate its effect on several common weeds in container-grown ornamentals. Mustard seed meal applied to the soil surface of containers at 113, 225, and 450 g·m−2 reduced the number of annual bluegrass (Poa annua L.) seedlings by 60%, 86%, and 98%, respectively, and the number of common chickweed (Stellaria media L.) seedlings by 61%, 74%, and 73%, respectively, at 8 weeks after treatment (WAT). Mustard seed meal applied to the soil surface after transplanting Rosa L. hybrid, var. ‘Red Sunblaze’, Phlox paniculata L., var. ‘Franz Schubert’, and Coreopsis auriculata L., var. ‘Nana’ did not injure or affect the flowering or growth of ornamentals. In separate experiments, mustard seed meal applied at 225 g·m−2 to the soil surface reduced the number of emerged seedlings and fresh weight of creeping woodsorrel (Oxalis corniculata) 90% and 95%, respectively, at 8 WAT. Mustard seed meal applied at 450 g·m−2 completely prevented woodsorrel emergence at 8 WAT. Mustard seed meal applied postemergence to established liverwort (Marchantia polymorpha L.) at 113, 225, and 450 g·m−2 did not injure container-grown Pulsatilla vulgaris Mill., var. ‘Heiler Hybrids Mixed’ up to 6 WAT and controlled liverwort from 83% to 97% at 6 WAT. Weed suppression with mustard seed meal generally increased as rate increased from 113 to 450 g·m−2. Mustard seed meal may be useful for selective suppression of annual weeds when applied to the soil surface of container-grown transplanted ornamentals.


2020 ◽  
Vol 73 (2) ◽  
Author(s):  
Andrzej Borowy ◽  
Magdalena Kapłan

A field experiment was carried out in Felin Experimental Farm (2019) in Lublin region (Poland) in order to determine the effect of white mustard (<em>Sinapis alba </em>L.) seed meal (MSM) on weed density as well as on borage plant growth and yield under field cultivation. MSM scattered on soil surface at rates of 2 and 3 t ha<sup>−1</sup> when weeds emerged and a day before emergence of borage did not affect the number of borage seedlings but caused transient growth stunting and chlorosis of cotyledons and first leaves. However, final plant height, yield of above-ground parts, mericarp dimensions and weight, content of oil in mericarps, and oil composition were not significantly affected by MSM treatment. At harvest, MSM had decomposed completely, supplying considerable amounts of phosphorus, potassium, and magnesium to the soil, but did not affect its pH or organic matter content. MSM suppressed weed density by 37%–46% during the period of highest sensivity of borage to weed competition. Among dominant weeds occurring in the experiment, <em>Gnaphalium uliginosum </em>and <em>Stellaria media </em>were the most susceptible to MSM, while <em>Amaranthus retroflexus </em>and <em>Galinsoga ciliata </em>were mildly susceptible, <em>Echinochloa cruss-galli </em>and <em>Poa annua </em>were less susceptible, and the least susceptible species was <em>Capsella bursa-pastoris</em>. Obtained results show that MSM may have value for early season weed suppression in borage cultivation.


2018 ◽  
Vol 10 (2) ◽  
pp. 48 ◽  
Author(s):  
Rick A. Boydston ◽  
Steven F. Vaughn ◽  
Charles L. Webber III ◽  
Bernardo Chaves-Cordoba

Mustard seed meal (MSM) derived from Sinapis alba controls weeds for several weeks following application to soil, but also has potential to injure the planted crop. Producers of certified organic potatoes typically utilize a combination of cover crops, soil hilling, harrowing, and cultivation for weed control. Once the potato canopy nears row closure, most late emerging weeds are suppressed by the dense potato canopy. MSM may have value for early season weed suppression in potato, but has not been previously tested. Our objectives were to determine the weed control efficacy and potato tolerance to MSM. We evaluated response of potatoes and weeds to MSM applied at 1.1, 2.2, and 4.5 MT ha-1 applied in a band on the potato hill just after a shallow harrowing and prior to potato emergence as part of an integrated weed management program in potatoes. MSM applied at 2.2 and 4.5 MT ha-1 reduced early season grass and broadleaf weed density 73 to 99% and 54 to 98%, respectively, in potato and reduced late season broadleaf weed biomass 71 to 94% in all three years tested. Early season grass weed density in potato was reduced by MSM at 2.2 and 4.5 MT ha-1. Late season grass weed biomass was reduced by the highest rate of 4.5 MT ha-1. MSM at 4.5 MT ha-1 caused minor injury to potato (3 to 15%) at 3 weeks after emergence, but did not reduce total tuber yields or percentage of US No.1 tubers. MSM could be a component of an integrated weed control program in potato.


2010 ◽  
Vol 24 (4) ◽  
pp. 440-445 ◽  
Author(s):  
Daniel T. Earlywine ◽  
Reid J. Smeda ◽  
Travis C. Teuton ◽  
Carl E. Sams ◽  
Xi Xiong

Oriental mustard seed meal (MSM), a byproduct generated by pressing the seed for oil, exhibits herbicidal properties. In turfgrass, soil fumigants such as methyl bromide are used to control weeds prior to renovation of turf. Environmental concerns have resulted in deregistration of methyl bromide, prompting the need for alternatives. The objective of this research was to determine the effect of MSM on the establishment of selected turfgrass weeds as well as inhibitory effects on establishment of desirable turfgrasses. Greenhouse experiments were conducted in 2006 and 2007 at the University of Missouri. MSM was amended in soil at 0, 1,350 (low), 2,350 (medium), and 3,360 kg ha−1(high) concentrations. Weed species included annual bluegrass, large crabgrass, buckhorn plantain, white clover, and common chickweed. Turfgrass species included: Rembrandt tall fescue, Evening Shade perennial rye, and Riviera bermudagrass. All species were seeded into soil amended with MSM and either tarped or left untarped. All treatments were compared to dazomet (392 kg ha−1), a synthetic standard. Plant counts and biomass of all species were recorded 4 wk after seeding. Overall, tarped treatments suppressed weed emergence 27 to 50% more compared to untarped treatments, except for large crabgrass. High rates of MSM suppressed emergence of all weeds ≥ 63%. Compared to the untreated control, the density of buckhorn plantain, white clover, and common chickweed was reduced by ≥ 42% at low rates of MSM. Biomass of buckhorn plantain, annual bluegrass, common chickweed, white clover, and large crabgrass was reduced from 37 to 99% at high rates of MSM. MSM at high rates reduced stand counts of tall fescue and perennial ryegrass up to 81% and 77% respectively, compared to the untreated control. Regardless of MSM rates or tarping, suppression of common bermudagrass emergence did not exceed 30%; tarped treatments actually increased bermudagrass emergence by 22%. The biomass for tall fescue, perennial ryegrass, and bermudagrass was reduced by 85, 68, and 10%, respectively, at high rates of MSM. For tall fescue, MSM at all rates strongly suppressed seed germination by 7 d after planting (DAP) (up to 100%), with additional germination observed through 14 DAP, but not thereafter. In both trials, dazomet completely suppressed emergence of all weeds. MSM appears to suppress emergence and growth of a number of weeds common in turf, with potential selectivity for bermudagrass.


1976 ◽  
Vol 3 (6) ◽  
pp. 731 ◽  
Author(s):  
JTO Kirk ◽  
NA Pyliotis

The solubility properties of the proteins of oil-free meal of white mustard seed (S. alba) in various aqueous extraction media are described. Electrophoresis on cellulose acetate of a salt extract of the seed meal at pH 7.0 shows the presence of two positively charged protein bands: a slow moving intense band (I) and a less intense band with higher mobility (II). On the basis of Sephadex G100 chromatography and sedimentation behaviour, these bands are deemed to be identical with the two major protein classes (12 S and 1.7 S, respectively) present in this and other Brassica-related species, as described by other workers. Centrifugation after filtration of a seed meal homogenate yields a preparation that is completely soluble in salt solution, and can be shown by electron microscopy to consist entirely of protein body fragments. Only the 12 S protein can be detected in significant quantity in this preparation: this protein at least we may assume to be present in the aleurone (protein) grains observed in micrographs of the cotyledon cells. In germinating seeds, disappearance of protein bodies is accompanied by a diminution in total salt-soluble protein and in the amounts of the 12 S and 1.7 S proteins, supporting their identification as storage proteins. The rate of utilization is the same in the light and in the dark. Proteolytic activity was detected in the ungerminated seed. The level of activity was more than sufficient to account for the subsequent observed rate of protein utilization. Proteolytic activity per seed increased by only 40-70% during 4 days germination.


age ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Manuel J. Sabbagh ◽  
Sindhu Jagadamma ◽  
Lori A. Duncan ◽  
Forbes R. Walker ◽  
Jaehoon Lee ◽  
...  

2019 ◽  
Vol 18 (5) ◽  
pp. 83-93 ◽  
Author(s):  
Marcela Krawiec ◽  
Andrzej Borowy ◽  
Katarzyna Dzida

The fight against weeds in the organic cultivation of herbal plants, both raw and for seeds, is a big challenge for growers. The paper compares the chemical (bentazon, 960 g·ha–1 and fluazifop-P-butyl, 150 g·ha–1) and nonchemical (scattering mustard seed meal in two doses 1.5 and 3.0 t·ha–1) control of weeds in the cultivation of lemon balm for seeds. Additionally, the influence of these factors on the yield of fresh herb and seeds of lemon balm and the sowing value of seeds was evaluated. The best method to control weed infestation was to use mustard seed meal in an amount of 3.0 t∙ha–1. Scattering of mustard seed meal in that dose reduced the number and weight of weeds on average from two years of research by 52.1 and 60.2% in relation to unweeded control. Slightly less effective methods were successively: bentazon and application of mustard seed meal in quantity of 1.5 t·ha–1. The largest yield of fresh lemon balm herb was collected from plots where mustard seed meal was used in an amount of 3.0 t∙ha–1. Seeds harvested from plots, on which mustard seed meal was used in a larger quantity was characterized by the lowest sowing value determined by the lowest energy and capacity of germination and the highest share of nongerminated seeds. Lowering the amount of used mustard seed meal to 1,5 t·ha–1 significantly improved their sowing value. Although this method was less effective in counteracting weeds than using larger dose, it provided comparable effects of reducing the number and weight of weeds in relation to chemical protection.


2019 ◽  
Vol 109 (8) ◽  
pp. 1378-1391 ◽  
Author(s):  
Likun Wang ◽  
Mark Mazzola

An orchard field trial was conducted to assess the utility of reduced rate Brassicaceae seed meal (SM) amendment in concert with specific rootstock genotypes for effective control of apple replant disease. Three amendment rates of a 1:1 formulation of Brassica juncea-Sinapis alba SM were compared with preplant 1,3-dichloropropene/chloropicrin soil fumigation for disease control efficacy. When applied at the highest rate (6.6 t ha−1) in the spring of planting, SM caused significant phytotoxicity and tree mortality, which was higher for Gala/M.26 than for Gala/G.41 but was not observed at SM application rates of 2.2 or 4.4 t ha−1. SM treatment resulted in growth and yield increases of Gala/M.26 and Gala/G.41 trees in a manner similar to the fumigation treatment and significantly greater than the no treatment control. Tree growth in soils treated with SM at 4.4 t ha−1 was similar or superior to that obtained with SM at 6.6 t ha−1 and superior to that attained at an SM application rate of 2.2 t ha−1. Soil fumigation and all SM treatments reduced Pratylenchus penetrans root infestation relative to the control treatment at the end of the initial growing season. Lesion nematode root densities in the fumigation treatment, but not SM treatments, rapidly recovered and were indistinguishable from the control at the end of the second growing season. Soil fumigation and all SM treatments significantly suppressed Pythium spp. root infection relative to the control. Trees grafted to rootstock G.41 possessed lower P. penetrans root densities relative to trees grafted to rootstock M.26. One year after planting, composition of microbial communities from SM-amended soils was distinct from those detected in control and fumigated soils, and the differences were amplified with increasing SM application rate. Specific fungal and bacterial phyla associated with suppression of plant pathogens were more abundant in SM-treated soil relative to the control, and they were similar in abundance in 4.4- and 6.6-t ha−1 SM treatments. Findings from this study demonstrated that use of the appropriate apple rootstock genotype will allow for effective replant disease control at SM application rates significantly less than that utilized previously (6.6 t ha−1).


2012 ◽  
Vol 26 (1) ◽  
pp. 118-125 ◽  
Author(s):  
Kathleen M. Hendrix ◽  
Matthew J. Morra ◽  
Hahn-Bit Lee ◽  
Sea C. Min

Sign in / Sign up

Export Citation Format

Share Document