scholarly journals Physiological Research on Winter-hardiness: Deacclimation Resistance, Reacclimation Ability, Photoprotection Strategies, and a Cold Acclimation Protocol Design

HortScience ◽  
2011 ◽  
Vol 46 (8) ◽  
pp. 1070-1078 ◽  
Author(s):  
Rajeev Arora ◽  
Lisa J. Rowland

Freezing is a major environmental stress during an annual cycle of overwintering, temperate-zone perennials. The timing and extent of seasonal cold acclimation (development of freezing tolerance in the fall) and deacclimation (loss of acquired freezing tolerance in response to warm temperatures) are of critical importance for winter survival, particularly in view of the climate change, i.e., unpredictable extreme weather occurrences. For example, plants may acclimate inadequately if exposed to a milder fall climate and may be damaged by sudden frosts. Alternatively, they may deacclimate prematurely as a result of unseasonable, midwinter warm spells and be injured by the cold that follows. Efficient cold acclimation ability, high deacclimation resistance, and efficient reacclimation capacity are, therefore, important components of winter survival in overwintering perennials. These components should be evaluated separately for a successful breeding program focused on improving winter-hardiness. Another layer of complexity that should be carefully considered is that endodormant status (shallow versus deep) of the reproductive/vegetative apices can significantly impact these components of winter-hardiness. Winter survival, especially by woody evergreens, requires tolerance of light stress, which can result in photo-oxidative damage at cold temperatures when biochemistry of photosynthesis is somewhat compromised but light harvesting is unaffected. Accumulation of Elips (early light-induced proteins) in overwintering evergreens during winter represents a relatively novel strategy to cope with such light stress, and investigations on the precise cellular mechanism and genetic control of this strategy deserve research in the future. Investigations into the mechanisms for cold acclimation use laboratory-based, artificial acclimation protocols that often do not closely approximate conditions that plants are typically exposed to in nature. To draw meaningful conclusions about the biology of cold acclimation and ultimately improve freeze resistance under field conditions, one should also include in cold acclimation regimens parameters such as exposure to subfreezing temperatures and realistic diurnal temperature fluctuations and light levels to simulate natural conditions. One of the main objectives of this article is to highlight two areas of research that we believe are important in the context of plant cold-hardiness but, so far, have not received much attention. These are: 1) to understand the biology of deacclimation resistance and reacclimation capacity, two important components of freeze-stress resistance (winter-hardiness) in woody perennials; and 2) to investigate the cellular basis for various strategies used by broad-leaved evergreens for photoprotection during winter. Our emphasis, in this context, is on a family of proteins, called Elips. The second objective of this article is to draw attention of the cold-hardiness research community to the importance of using realistic cold acclimation protocols in controlled environments that will approximate natural/field conditions to be better able to draw meaningful conclusions about the biology of cold acclimation and ultimately improve freeze resistance. Results from our work with Rhododendron (deciduous azaleas and broad-leaved evergreens), blueberry, and that of other researchers are discussed to support these objectives.

2005 ◽  
Vol 130 (4) ◽  
pp. 508-514 ◽  
Author(s):  
Lisa J. Rowland ◽  
Elizabeth L. Ogden ◽  
Mark K. Ehlenfeldt ◽  
Bryan Vinyard

Deacclimation response is an important part of reproductive success in woody perennials because late winter or early spring thaws followed by hard freezes can cause severe injury to dehardened flower buds. There is a need to develop more spring-frost tolerant cultivars for the blueberry (Vaccinium L.) industry. The identification of later or slower deacclimating genotypes could be useful in breeding for more spring-frost tolerant cultivars. This study was undertaken to investigate cold hardiness and deacclimation kinetics under field conditions for 12 Vaccinium (section Cyanococcus A. Gray) genotypes (the cultivars Bluecrop, Duke, Legacy, Little Giant, Magnolia, Northcountry, Northsky, Ozarkblue, Pearl River, Tifblue, and Weymouth; and a population of V. constablaei Gray) with different germplasm compositions and expected mid-winter bud hardiness levels. Examination of bud cold hardiness (BCH) vs. weeks of deacclimation over a 7-week period in 2 consecutive years (2002 and 2003) revealed clear genotypic differences in cold hardiness and timing and rate of deacclimation. Among cultivars, `Legacy' was the least cold hardy at initial evaluation, even less so than `Tifblue'. Regarding deacclimation kinetics, the weekly intervals with the largest losses (i.e., high rates of deacclimation) also varied among genotypes. For `Duke', the largest losses in BCH were detected at weeks 2 and 3, making it the earliest deacclimator. For `Bluecrop', `Ozarkblue', `Weymouth', `Tifblue', and `Legacy', the greatest losses in BCH were observed at weeks 3 and 4. For `Little Giant', `Magnolia', `Northcountry', `Northsky', and `Pearl River', losses in BCH were greatest at weeks 4 and 5, while for V. constablaei, losses were greatest at weeks 6 and 7, making it the latest deacclimator. Deacclimation kinetics were not correlated with mid-winter hardiness or chilling requirements in any fixed pattern. On the other hand, a strong positive correlation was found between BCH and stage of bud opening (r = 0.84). A comparison of timing of deacclimation with germplasm composition indicated that V. constablaei was particularly late to deacclimate. `Little Giant', a 50:50 hybrid of V. constablaei and V. ashei Reade, was nearly as late to deacclimate as the 100% V. constablaei selections. Thus, V. constablaei may be useful in breeding programs to contribute genes for late deacclimation, which should translate into greater spring frost tolerance, in addition to genes for mid-winter hardiness.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 453d-453
Author(s):  
A.M. Shirazi ◽  
E.A. HedBorn ◽  
S.A. Mehaffey ◽  
A.S. Merritt

The winter hardiness of many groundcover cultivars in northern Illinois is not well-known. This study was designed to evaluate the survival of 172 plants used in the groundcover path at The Morton Arboretum. Once a month, from Sept.1997 to Jan. 1998, the plants chosen for this study were visually evaluated and their vitality rated on a scale of 1 to 5 (1 = alive, 5 = dead). All nine cultivars of Euonymus fortunei remained virtually unchanged throughout the study period. Among six cultivars of Hedera helix, only `Gold Heart' showed minor damage in November. Nine Heuchera were evaluated and all exhibited excellent resistance to cold temperatures. While all the Pulmonarias studied showed some cold damage by November, `Bielefeld Pink', `Little Blue', `Roy Davidson', Pulmonaria longifolia var. cevennensis, and Pulmonaria officinalis `Sissinghurst White' fared the best for the longest period of time. Five cultivars of Pachysandra terminalis were included in this study. None had significant damage until November, and then only rated a “2.” Of the eight Ajuga evaluated, Ajuga pyramidalis `Metallica Crispa', and Ajuga reptans `Braunherz', `Catlin's Giant', and `Gaiety', exhibited the best cold resistance. Four Polygonums varied widely in their response to cold temperatures, but all showed signs of severe damage in November. Polygonum `Border Jewel' exhibited the best tolerance, rating a “1” in October, but in November it was given a rating of “4.” Their recovery in spring will be compared.


2010 ◽  
Vol 28 (4) ◽  
pp. 235-239
Author(s):  
Frank P. Henning ◽  
Timothy J. Smalley ◽  
Orville M. Lindstrom ◽  
John M. Ruter

Abstract Plants that maintain their leaves throughout winter may respond differently to fall fertilization than deciduous plants. The effects of fall fertilization on cold hardiness, nutrient uptake, growth and flower production of evergreen versus deciduous azaleas were studied. Rhododendron canescens (Michx.) Sweet and R. × satsuki ‘Wakaebisu’ were grown in containers, outdoors in Athens, GA, under three fall fertigation regimes applied daily as 0.5 liter (0.13 gal) solutions containing: 1) 75 mg·liter−1 N from August 1 through September 29, 2) 75 mg·liter−1 N from August 1 through November 28, and 3) 125 mg·liter−1 N from August 1 through November 28. Stem freeze resistance was analyzed monthly November through March. Growth of azaleas that received 120 days of extended fertigation (August 1 through November 28) was not increased compared to azaleas that received 60 days of extended fertigation (August 1 through September 29). Growth of the two taxa did not differ in their response to fertilization treatments. The high rate of extended fertilization 125 mg·liter−1 N (from August 1 through November 28) reduced stem freeze resistance November through February, while the moderate rate of extended fertilization (75 mg·liter−1 N from August 1 through November 28) reduced azalea freeze resistance in December. Fall fertilization regimes did not produce differences in the timing of cold acclimation, or deacclimation of R. canescens and R. × satsuki. The high rate of extended fertilization promoted early budbreak of R. × satsuki and postponed flower budbreak of R. canescens. Flower production of R. canescens was not affected by fall fertilization, but the high rate of extended fertilization increased flower production of R. × satsuki compared to plants that received the moderate rate of fertilization 75 mg·liter−1 N from August 1 through September 29.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 512a-512
Author(s):  
Jennifer L. Dwyer ◽  
N. Curtis Peterson ◽  
G. Stanley Howell

The nursery industry continues to develop improved methods for successfully overwintering container-grown nursery stock. Experiments were conducted using several different species of woody ornamentals ranging from species known to be cold hardy to cold tender. Eighteen species were subjected to temperatures ranging from 20F to -20F and observed for post-stress performance and viability. Rates and timing of acclimation, mid-winter hardiness, and deacclimation of seven species were determined by examining the shoots for injury after subjecting them to controlled freezer conditions. The roots of the same seven species were exposed to three different overwintering systems: in a polyhouse, pot-to-pot above the ground, and pot-in-pot below the ground. Cold hardiness of root and shoot systems and the effects of warming temperatures on shoots were determined as well as the post-stress performance of each species. Results of this research will be presented.


2021 ◽  
Vol 4 ◽  
Author(s):  
Devin Noordermeer ◽  
Vera Marjorie Elauria Velasco ◽  
Ingo Ensminger

During autumn, evergreen conifers utilize the decrease in daylength and temperature as environmental signals to trigger cold acclimation, a process that involves the downregulation of photosynthesis, upregulation of photoprotection, and development of cold hardiness. Global warming will delay the occurrence of autumn low temperatures while daylength remains unaffected. The impact of autumn warming on cold acclimation and the length of the carbon uptake period of species with ranges that encompass diverse climates, such as Douglas-fir (Pseudotsuga menziesii), remains unclear. Our study investigated intraspecific variation in the effects of autumn warming on photosynthetic activity, photosynthetic pigments, and freezing tolerance in two interior (var. glauca) and two coastal (var. menziesii) Douglas-fir provenances. Following growth under simulated summer conditions with long days (16 h photoperiod) and summer temperatures (22/13°C day/night), Douglas-fir seedlings were acclimated to simulated autumn conditions with short days (8 h photoperiod) and either low temperatures (cool autumn, CA; 4/−4°C day/night) or elevated temperatures (warm autumn, WA; 19/11°C day/night). Exposure to low temperatures in the CA treatment induced the downregulation of photosynthetic carbon assimilation and photosystem II efficiency, increased the size and de-epoxidation of the xanthophyll cycle pigment pool, and caused the development of sustained nonphotochemical quenching (NPQ). Seedlings in the WA treatment exhibited no downregulation of photosynthesis, no change in xanthophyll cycle pigment de-epoxidation, and no development of sustained NPQ. Albeit these changes, freezing tolerance was not impaired under WA conditions compared with CA conditions. Interior Douglas-fir seedlings developed greater freezing tolerance than coastal seedlings. Our findings suggest that autumn warming, i.e., short photoperiod alone, does not induce the downregulation of photosynthesis in Douglas-fir. Although autumn warming delays the downregulation of photosynthesis, the prolonged period of photosynthetic activity does not bear a trade-off of impaired freezing tolerance.


2020 ◽  
Vol 229 (2) ◽  
pp. 675-691 ◽  
Author(s):  
Christine Yao‐Yun Chang ◽  
Katharina Bräutigam ◽  
Norman P. A. Hüner ◽  
Ingo Ensminger

2008 ◽  
Vol 133 (4) ◽  
pp. 542-550 ◽  
Author(s):  
Xunzhong Zhang ◽  
Kehua Wang ◽  
Erik H. Ervin

Recent advances in bermudagrass [Cynodon dactylon (L.) Pers. var. dactylon] breeding and cultural management practices have enabled its use as a sports surface in U.S. Department of Agriculture cold hardiness zones 5 and 6. Use of these more cold-hardy bermudagrass cultivars further into transition- and cool-season zones increases the probability of freezing injury and increases the need for an improved understanding of physiological responses to chilling and freezing temperatures. Abscisic acid (ABA) has been shown to increase during cold acclimation (CA) and play a role in dehydration tolerance. This study investigated changes in ABA metabolism and dehydrin expression during CA and their association with freezing tolerance in four bermudagrass cultivars. Two cold-tolerant (‘Patriot’ and ‘Riviera’) and two relatively cold-sensitive (‘Tifway’ and ‘Princess’) cultivars were either subjected to CA at 8 °C day/4 °C night with a light intensity of 250 μmol·m−2·s−1 over a 10-h photoperiod for 21 days or maintained at 28 °C day/24 °C night over a 12-h photoperiod. In a separate study, exogenous ABA at 0, 50, 100, and 150 μm was applied to ‘Patriot’ bermudagrass without CA. ABA content in leaf and stolon tissues increased substantially during the first week of CA and remained relatively stable thereafter. ‘Patriot’ and ‘Riviera’ had greater ABA content and less stolon electrolyte leakage (EL) relative to ‘Tifway’ and ‘Princess’. Expression of a 25 kDa dehydrin protein increased during CA in all four cultivars. A significant correlation was found between ABA content and freezing tolerance. Exogenously applying ABA to ‘Patriot’ at 50, 100, and 150 μm significantly increased endogenous ABA content and the 25 kDa dehydrin expression and reduced stolon EL. The results suggest that alteration of ABA metabolism during CA is closely associated with freezing tolerance. Selection and use of cultivars with substantial accumulation of ABA and certain dehydrins during CA or in response to exogenous ABA could improve bermudagrass persistence in transition zone climates.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 525A-525
Author(s):  
Christopher L. Owens ◽  
J.F. Hancock ◽  
A.F. Iezzoni

Sour cherry and strawberry are examples of two Rosaceous species that often suffer crop reductions due to spring freezes. Breeding for improved floral freezing tolerance has the potential to mitigate the susceptibility of these plants to spring frosts. In model plant systems, researchers have been able to identify genes that play a role in freezing tolerance by initially searching for mRNAs regulated in response to cold temperatures. To search for cold-responsive freezing-tolerance genes in strawberry and sour cherry, it is necessary to first define their cold acclimation response. To test the hypothesis that sour cherry and strawberry flowers have the ability to cold acclimate, blooming plants were exposed to 4 °C and 16 h light for 14 days. Sour cherry styles and strawberry receptacles from open, fully developed flowers were excised, and electrolyte leakage curves were generated over a range of subzero temperatures. The temperature at which 50% electrolyte leakage (EL50) occurred was used to compare treatments. The flowers of two strawberry cultivars were tested for the ability to cold acclimate. Non-acclimated `Chandler' receptacles had an EL50 of -2.9 °C, while non-acclimated `Honeoye' had an EL50 of -3.4 °C. Conversely, acclimated `Chandler' receptacles had an EL50 of -7.7 and acclimated `Honeoye' receptacles had an EL50 of -8.7 °C, both are significantly different from non-acclimated values (P ≤ 0.01). Additionally, sour cherry styles were collected from the field at full bloom from a mapping population of 86 individuals from the cross `Rheinische Schattenmorelle' × `Erdi Botermo' and acclimated as previously described. The EL50 of the 86 progeny ranged from approximately -2.0 to -6.0 °C.


2004 ◽  
Vol 129 (5) ◽  
pp. 667-674 ◽  
Author(s):  
Rajeev Arora ◽  
Lisa J. Rowland ◽  
Elizabeth L. Ogden ◽  
Anik L. Dhanaraj ◽  
Calin O. Marian ◽  
...  

Loss of freeze tolerance, or deacclimation, is an integral part of winter survival in woody perennials because untimely mid-winter or spring thaws followed by a hard freeze can cause severe injury to dehardened tissues. This study was undertaken to investigate deacclimation kinetics, particularly the timing and speed, of five blueberry (Vaccinium L.) cultivars (`Bluecrop', `Weymouth', `Ozarkblue', `Tifblue', and `Legacy'), with different germplasm compositions and mid-winter bud hardiness levels, in response to an environmentally controlled temperature regime. Based upon bud cold hardiness evaluations in 2000 and 2001, `Tifblue', a Vaccinium ashei Reade cultivar, was one of the least hardy and the fastest to deacclimate; `Bluecrop', a predominantly V. corymbosum L. cultivar, was the most hardy and the slowest to deacclimate; and `Ozarkblue', a predominantly V. corymbosum cultivar but including southern species V. darrowi Camp. and V. ashei, was intermediate in speed of deacclimation. `Weymouth' (predominantly V. corymbosum) and `Legacy' (73.4% V. corymbosum and 25% V. darrowi) were slow to intermediate deacclimators. Deacclimation rates did not correlate strictly with mid-winter bud hardiness. Data suggest that the southern germplasm component V. ashei may be responsible for the observed faster deacclimation whereas both southern species, V. darrowi and V. ashei, may contribute genes for cold sensitivity. Strong positive correlations between stage of bud opening and bud cold hardiness existed in both years (r = 0.90 and 0.82 in 2000 and 2001 study, respectively). Previously identified major blueberry dehydrins, 65-, 60-, and 14-kDa, progressively decreased in their abundance during incremental dehardening in `Bluecrop', `Weymouth', and `Tifblue'. However, down-regulation of the 14-kDa dehydrin most closely mirrored the loss in cold hardiness during deacclimation, and, therefore, may be involved in regulation of bud dehardening. Because differences in deacclimation rate were clearly evident among the genotypes studied, rate of deacclimation of the flower buds of blueberry should be an important consideration in breeding to improve winter survival.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 453b-453
Author(s):  
Chon C. Lim ◽  
Stephen L. Krebs ◽  
Rajeev Arora

This study examines whether dehydrin expression in leaves is associated with varying levels of cold hardiness among evergreen rhododendrons. Initially, differences in leaf freezing tolerance (LFT) were determined within three groups of plants: 1) a cultivar group; `Chionoides' (CND), `Grumpy Yellow' (GY), and `Vulcan's Flame' (VF) 2) a segregating F2 population derived from a super coldhardy (R. catawbiense) × less-hardy (R. fortunei) cross, and 3) juvenile seedlings and mature plants of wild-collected R. maximum. LFTs in fully acclimated cultivars corresponded with their USDA hardiness zone ratings—CND (zone 4, –32 °C) GY (zone 7, –16 °C), and VF (zone 6, –19 °C). F2 segregation was characterized by a continuous, normal distribution of LFT values, with groups of progeny at the “tails” differing in their mean LFT by 20 °C. Juvenile seedlings of R. maximum exhibited LFTs that were 12 °C lower than LFTs from mature plants. Western blots of leaf proteins revealed a common 50-kDa dehydrin that accumulated during cold acclimation in all three cultivars and appeared to be quantitatively associated with LFTs. Isoelectric focusing of the 50-kDa Rhododendron dehydrin revealed two isoforms (pI 5.5 and 6.5). The more acidic isoform was detected only in the hardiest (CND) cultivar. Experiments are underway to examine qualitative and quantitative expression of dehydrins and its association with LFT in the segregating F2 population and in the group of R. maximum plants differing in physiological age.


Sign in / Sign up

Export Citation Format

Share Document