scholarly journals Ascorbic Acid, Thiamin, Riboflavin, and Vitamin B6 Contents Vary between Sweetpotato Tissue Types

HortScience ◽  
2014 ◽  
Vol 49 (11) ◽  
pp. 1470-1475 ◽  
Author(s):  
Wilmer A. Barrera ◽  
David H. Picha

Sweetpotato is considered a good source of ascorbic acid (vitamin C) and certain B vitamins. These water-soluble vitamins (WSV) play essential roles in sustaining human health. Besides the root, sweetpotato vegetative tissues are also edible and considered high in nutritional value. Despite the availability of general reference values for sweetpotato WSV content in the root and leaves, little is known about the distribution of these vitamins in specific sweetpotato root and vegetative tissues. The objective of this study was to determine the ascorbic acid (AA), thiamin (B1), riboflavin (B2), and vitamin B6 content in a range of foliar tissues including buds, vines, young petioles, young leaves, mature petioles, and mature leaves and root tissues including the skin, cortex, and pith tissue at the proximal, distal, and center regions of the root. Among foliar tissues of ‘Beauregard’ sweetpotatoes, the AA content was highest in young leaves (108 to 139 mg/100 g fresh weight) and lowest in mature petioles (7.2 to 13.9 mg). No thiamin was detected in foliar tissue, whereas mature leaves contained the highest riboflavin and vitamin B6 content (0.22 to 0.43 mg and 0.52 to 0.58 mg, respectively). In root tissues of ‘Beauregard’ and ‘LA 07-146’ sweetpotatoes, the AA content was lower in the skin (1.9 to 5.6 mg and 2.54 to 3.82 mg, respectively). The AA content in the cortex and pith tissue at the proximal, distal, and center of the root was generally similar. The thiamin content was variable among root tissues, whereas the skin contained the highest riboflavin content and the lowest vitamin B6 content across root tissues of both cultivars. The results of this study confirmed earlier reports suggesting that sweetpotato leaves can be a good source of multiple WSV in the human diet.

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4279 ◽  
Author(s):  
Hatsumi Wakamatsu ◽  
Sumire Tanaka ◽  
Yosuke Matsuo ◽  
Yoshinori Saito ◽  
Koyo Nishida ◽  
...  

The leaves of Castanopsis sieboldii (Fagaceae) contain characteristic hexahydroxydiphenoyl (HHDP) esters of 28-O-glucosyl 2α,3β,23,24-tetrahydroxyolean- and urs-12-en-28-oic acids. In this study, uncharacterized substances were detected in the young leaves, which are not observed in the mature leaves. Preliminary HPLC analyses indicated that the substances had dehydro-HHDP (DHHDP) ester groups; however, the esters were unstable and decomposed during extraction. Therefore, the compounds were isolated as their stable phenazine derivatives by extracting the young leaves with acidic aqueous EtOH containing o-phenylenediamine. The structures of the phenazine derivatives indicated that the unstable metabolites of the young leaves were 3,24-DHHDP esters of the abovementioned triterpenes. Extraction of the young leaves with 80% acetonitrile containing reducing agents, ascorbic acid or dithiothreitol afforded the corresponding HHDP esters. Furthermore, heating of the young leaves in 80% acetonitrile also yielded the same HHDP esters as the reduction products. The results suggested that the HHDP esters are reductively produced from DHHDP esters in the young leaves. In addition, the structures of five previously reported triterpene HHDP esters were revised.


1983 ◽  
Vol 49 (3) ◽  
pp. 355-364 ◽  
Author(s):  
J. E. Ford ◽  
R. F. Hurrell ◽  
P. A. Finot

1. Storage of milk powder under unfavourable conditions accelerates the normally slow deterioration in nutritional quality. The effects of such storage on the water-soluble vitamin composition were examined.2. (a) Spray-dried whole milk containing 25 g water/kg was stored at 60° and 70° and sampled weekly to 9 weeks. (b) Spray-dried whole milk and skimmed milk were adjusted to contain 40 and 100 g water/kg and stored at 37° in nitrogenand in oxygen. Samples were taken for analysis at intervals during storage.3. The samples were analysed for eight B-complex vitamins and ascorbic acid, and also for total lysine, ‘reactive lysine’ and ‘lysine as lactulosyl-lysine’.4. Storage at 60° caused rapid destruction of folic acid (53% loss at 4 weeks) and slower loss of thiamin, vitamin B6 and pantothenic acid (18% at 8 weeks). There was no change in the content of riboflavin, biotin, nicotinic acid and vitamin B12. At 70° the rate of destruction of the four labile vitamins was much increased; 18% or less survived at 4 weeks.5. At 37° and 40 g water/kg there was little change in total and ‘reactive’ lysine during storage for 57 d. Lactulosyl-lysine was demonstrably present butatlow concentration. There was considerable loss of folate (72%) and ascorbate (91%) during storage for 30 d in O2, but no significant loss in N2. Thiamin fell by approximately 12% in 57 d, equally in O2 and N2. The content of the remaining vitamins was unchanged. At 100 g water/kg there were progressive Maillard changes. During 27 d in N2 the colour changed from cream to palebrown, but in O2 there was no perceptible colour change. Total lysine fell by 20% in 27 d, and ‘reactive lysine’ by 30%. Folate was stable during 16 d in N2, but largely (94%) destroyed in O2. Ascorbic acid was also destroyed in N2 as in O2. Thiamin fell by 41% in 27 d, equally in O2 and N2. Vitamin B6 was more labile, especially in N2, falling by 71% in 16d.6. With skimmed-milk powder containing 100 g water/kg, storage at 37° in O2 and N2 gave much the same results as for the corresponding whole-milk powder. The presence of milk fat had no marked effect on the stability of the water-soluble vitamins.7. Destruction of vitamins was clearly linked to the progress of Maillard-type reactions and was strongly influenced by time and temperature of storage, moisture content and, in some instances, by the presence of O2.


2020 ◽  
Vol 90 (5-6) ◽  
pp. 439-447 ◽  
Author(s):  
Andrew Hadinata Lie ◽  
Maria V Chandra-Hioe ◽  
Jayashree Arcot

Abstract. The stability of B12 vitamers is affected by interaction with other water-soluble vitamins, UV light, heat, and pH. This study compared the degradation losses in cyanocobalamin, hydroxocobalamin and methylcobalamin due to the physicochemical exposure before and after the addition of sorbitol. The degradation losses of cyanocobalamin in the presence of increasing concentrations of thiamin and niacin ranged between 6%-13% and added sorbitol significantly prevented the loss of cyanocobalamin (p<0.05). Hydroxocobalamin and methylcobalamin exhibited degradation losses ranging from 24%–26% and 48%–76%, respectively; added sorbitol significantly minimised the loss to 10% and 20%, respectively (p < 0.05). Methylcobalamin was the most susceptible to degradation when co-existing with ascorbic acid, followed by hydroxocobalamin and cyanocobalamin. The presence of ascorbic acid caused the greatest degradation loss in methylcobalamin (70%-76%), which was minimised to 16% with added sorbitol (p < 0.05). Heat exposure (100 °C, 60 minutes) caused a greater loss of cyanocobalamin (38%) than UV exposure (4%). However, degradation losses in hydroxocobalamin and methylcobalamin due to UV and heat exposures were comparable (>30%). At pH 3, methylcobalamin was the most unstable showing 79% degradation loss, which was down to 12% after sorbitol was added (p < 0.05). The losses of cyanocobalamin at pH 3 and pH 9 (~15%) were prevented by adding sorbitol. Addition of sorbitol to hydroxocobalamin at pH 3 and pH 9 reduced the loss by only 6%. The results showed that cyanocobalamin was the most stable, followed by hydroxocobalamin and methylcobalamin. Added sorbitol was sufficient to significantly enhance the stability of cobalamins against degradative agents and conditions.


2003 ◽  
Vol 73 (1) ◽  
pp. 3-7 ◽  
Author(s):  
M. E. Mavrikakis ◽  
J. P. Lekakis ◽  
M. Papamichael ◽  
K. S. Stamatelopoulos ◽  
Ch. C. Kostopoulos ◽  
...  

Previous studies have shown that patients with Raynaud’s phenomenon secondary to systemic sclerosis present abnormal endothelial function; the mechanisms responsible for the endothelial dysfunction are unknown but increased vascular oxidative stress could be a possible cause. The hypothesis that a potent water-soluble antioxidant can reverse endothelial dysfunction in these patients was tested in the present study. We examined 11 female patients with Raynaud’s phenomenon secondary to systemic sclerosis and ten healthy control women by ultrasound imaging of the brachial artery to assess flow-mediated (endothelium-dependent) and nitrate-induced (endothelium-independent) vasodilatation. Flow-mediated dilatation and nitrate-induced dilatation were significantly reduced in patients with Raynaud’s phenomenon, indicating abnormal endothelial and smooth muscle cell function. Patients with Raynaud’s phenomenon entered a double-blind, randomized, crossover placebo-controlled trial and received orally 2 g of ascorbic acid or placebo; vascular studies were repeated two hours after ascorbic acid or placebo administration. Flow-mediated dilatation did not improve after ascorbic acid (1.6 ± 2.2% to 2.2 ± 2.5%, ns) or placebo administration (1.2 ± 1,9% to 1.7 ± 1.4%, ns); also nitrate-induced dilatation was similar after ascorbic acid or placebo (16 ± 7.4% vs 17 ± 8%, ns), suggesting no effect of ascorbic acid on endothelial and vascular smooth muscle function. In conclusion, ascorbic acid does not reverse endothelial vasomotor dysfunction in the brachial circulation of patients with Raynaud’s phenomenon secondary to systemic sclerosis. The use of different antioxidants or different dosing of ascorbic acid may be required to show a beneficial effect on endothelial vasodilator function.


Agrotek ◽  
2018 ◽  
Vol 2 (3) ◽  
Author(s):  
Antonius Suparno ◽  
Opalina Logo ◽  
Dwiana Wasgito Purnomo

Sweet potato serves as a staple food for people in Jayawijaya. Many cultivars of sweet potatoes have been cultivated by Dani tribe in Kurulu as foot for their infant, child and adult as well as feeding especially for pigs. Base on the used of sweet potatoes as food source for infant and child, this study explored 10 different cultivars. As for the leaf morphology, it was indentified that the mature leaves have size around 15 � 18 cm. general outline of the leaf is reniform (40%), 60% have green colour leaf, 50% without leaf lobe, 60% of leaf lobes number is one, 70% of shape of central leaf lobe is toothed. Abazial leaf vein pigmentation have purple (40%), and petiole pigmentation is purple with green near leaf (60%), besides its tuber roots, sweet potatoes are also harvested for its shoots and green young leaves for vegetables.


2020 ◽  
Vol 16 (7) ◽  
pp. 905-913
Author(s):  
Youyuan Peng ◽  
Qingshan Miao

Background: L-Ascorbic acid (AA) is a kind of water soluble vitamin, which is mainly present in fruits, vegetables and biological fluids. As a low cost antioxidant and effective scavenger of free radicals, AA may help to prevent diseases such as cancer and Parkinson’s disease. Owing to its role in the biological metabolism, AA has also been utilized for the therapy of mental illness, common cold and for improving the immunity. Therefore, it is very necessary and urgent to develop a simple, rapid and selective strategy for the detection of AA in various samples. Methods: The molecularly imprinted poly(o-phenylenediamine) (PoPD) film was prepared for the analysis of L-ascorbic acid (AA) on gold nanoparticles (AuNPs) - multiwalled carbon nanotubes (MWCNTs) modified glass carbon electrode (GCE) by electropolymerization of o-phenylenediamine (oPD) and AA. Experimental parameters including pH value of running buffer and scan rates were optimized. Scanning electron microscope (SEM), fourier-transform infrared (FTIR) spectra, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were utilized for the characterization of the imprinted polymer film. Results: Under the selected experimental conditions, the DPV peak currents of AA exhibit two distinct linear responses ranging from 0.01 to 2 μmol L-1 and 2 to 100 μmol L-1 towards the concentrations of AA, and the detection limit was 2 nmol L-1 (S/N=3). Conclusion: The proposed electrochemical sensor possesses excellent selectivity for AA, along with good reproducibility and stability. The results obtained from the analysis of AA in real samples demonstrated the applicability of the proposed sensor to practical analysis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shugang Zhao ◽  
Hongxia Wang ◽  
Kai Liu ◽  
Linqing Li ◽  
Jinbing Yang ◽  
...  

Abstract Background Tissue culture is an effective method for the rapid breeding of seedlings and improving production efficiency, but explant browning is a key limiting factor of walnut tissue culture. Specifically, the polymerization of PPO-derived quinones that cause explant browning of walnut is not well understood. This study investigated explants of ‘Zanmei’ walnut shoot apices cultured in agar (A) or vermiculite (V) media, and the survival percentage, changes in phenolic content, POD and PPO activity, and JrPPO expression in explants were studied to determine the role of PPO in the browning of walnut explants. Results The results showed that the V media greatly reduced the death rate of explants, and 89.9 and 38.7% of the explants cultured in V media and A media survived, respectively. Compared with that of explants at 0 h, the PPO of explants cultured in A was highly active throughout the culture, but activity in those cultured in V remained low. The phenolic level of explants cultured in A increased significantly at 72 h but subsequently declined, and the content in the explants cultured in V increased to a high level only at 144 h. The POD in explants cultured in V showed high activity that did not cause browning. Gene expression assays showed that the expression of JrPPO1 was downregulated in explants cultured in both A and V. However, the expression of JrPPO2 was upregulated in explants cultured in A throughout the culture and upregulated in V at 144 h. JrPPO expression analyses in different tissues showed that JrPPO1 was highly expressed in stems, young leaves, mature leaves, catkins, pistils, and hulls, and JrPPO2 was highly expressed in mature leaves and pistils. Moreover, browning assays showed that both explants in A and leaf tissue exhibited high JrPPO2 activity. Conclusion The rapid increase in phenolic content caused the browning and death of explants. V media delayed the rapid accumulation of phenolic compounds in walnut explants in the short term, which significantly decreased explants mortality. The results suggest that JrPPO2 plays a key role in the oxidation of phenols in explants after branch injury.


Sign in / Sign up

Export Citation Format

Share Document