scholarly journals Plant Species for the Removal of Na+ and Cl– from Greenhouse Nutrient Solution

HortScience ◽  
2014 ◽  
Vol 49 (8) ◽  
pp. 1071-1075 ◽  
Author(s):  
Eric R. Rozema ◽  
Robert J. Gordon ◽  
Youbin Zheng

Certain ions such as Na+ and Cl– can accumulate in recirculating greenhouse nutrient solutions and can reach levels that are damaging to crops. An option for the treatment of this problem is phytodesalinization with Na+ and Cl– hyperaccumulating plants that could be added to existing water treatment technologies such as constructed wetlands (CWs). Two microcosm experiments were conducted to evaluate eight plant species including Atriplex prostrata L. (triangle orache), Distichlis spicata (L.) Greene (salt grass), Juncus torreyi Coville. (Torrey’s rush), Phragmites australis (Cav.) Trin. ex Steud. (common reed), Spartina alterniflora Loisel. (smooth cordgrass), Schoenoplectus tabernaemontani (C.C. Gmel.) Palla (softstem bulrush), Typha angustifolia L. (narrow leaf cattail), and Typha latifolia L. (broad leaf cattail) for their Na+ and Cl– accumulation potential. An initial (indoor) experiment determined that J. torreyi, S. tabernaemontani, T. angustifolia, and T. latifolia were the best candidates for phytodesalinization because they had the highest Na+ and Cl– tissue contents after exposure to Na+ and Cl–-rich nutrient solutions. A second (outdoor) experiment quantified the Na+ and Cl– ion uptake (grams of each ion accumulated per m2 of microcosm). J. torreyi, S. tabernaemontani, T. angustifolia, and T. latifolia accumulated 5.8, 3.9, 8.3, and 9.2 g·m−2 of Na+ and 25.7, 18.2, 31.6, and 27.2 g·m−2 of Cl–, respectively. Of the eight species, T. latifolia and S. tabernaemontani showed the greatest potential to accumulate Na+ and Cl– in a CW environment, whereas S. alterniflora, D. spicata, and P. australis showed the least potential.

2017 ◽  
Vol 6 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Шулаев ◽  
N. Shulaev ◽  
Пряничникова ◽  
V. Pryanichnikova ◽  
Кадыров ◽  
...  

A way for restoration of soils polluted at oil production using plants has been described. Experiments on a research related to influence of oil and produced waters’ various volumes on mace reed (Týpha latifólia) and common reed grass (Phragmites communis) seeds viability have been carried out. These perennial plants’ reaction nature on soils pollution by salts’ model solution corresponding on structure to produced waters of fields has been studied. Statistical data processing has been carried out, and germinating ability-pollution content relationships have been described. Indicators for dynamics of germinating ability suppression have been presented. The obtained data demonstrates a possibility for use of hygrophilous vegetation’s described species at re-cultivation related to sites of oilfield soils with increased moistening as independently, and with preliminary preparation through other treatment technologies.


2016 ◽  
Vol 14 (2) ◽  
Author(s):  
Alba Nely Arévalo Verjel ◽  
Jacipt Alexander Ramón Valencia ◽  
Jairo Lenín Ramón Valencia

<p>En este trabajo de investigación se realizó el estudio cinético de un sistema de tratamiento de lixiviados proveniente de la compactación de las basuras del relleno sanitario Guayabal (Cúcuta), por medio de humedales artificiales utilizando las especies vegetales Crysopogon Zizanioides y Typha Latifolia utilizando como base el modelo de la ecuación de Michaelis-Menten que explica la cinética de una reacción enzimática, aplicando la metodología del agua residual para la mezcla de lixiviado. Las ecuaciones del tratamiento biológico de las aguas residuales dependen de coeficientes cinéticos y estequiometricos. Estos coeficientes varían entre diversos tipos de agua residual, por lo que es necesario calcularlos mediante ensayos pilotos de laboratorio, que simulen el tratamiento del agua residual en estudio. Una vez se estabilizo el biofiltro después de la semana séptima de monitoreo se llevó a cabo el estudio cinético. Se tomaron cuatro muestras por cada uno de los tiempos de retención los cuales fueron 5,4,3,2,1 día.</p><p>Los parámetros que se analizaron fueron Demanda Química de Oxigeno (DQO) y Sólidos Suspendidos Volátiles (SSV) analizados en los laboratorios de la Universidad Francisco de Paula Santander. Con los datos obtenidos de cada tiempo de retención, se procedió a realizar el cálculo de los coeficientes cinéticos y estequiométricos para sustrato y biomasa, el tiempo de retención que presento la mayor remoción de contaminantes y el mejor coeficiente de correlación R fue el de cinco días que se analizó para los diferentes autores: Orozco, Eckenfelder, McKinney dando mejores resultados para remoción de sustrato Eckenfelder y Orozco para producción de biomasa. Tras el periodo de monitoreo se determinó que la especie vegetal Typha latifolia alcanzó los valores máximos de remoción en la mayoría de los parámetros fisicoquímicos y microbiológicos evaluados; de manera semejante Crysopogon Zizanioides tuvo remociones con una diferencia mínima inferior.</p><p>Abstract</p><p>In this project the kinetic study of a leachate treatment system from compacting garbage landfill Guayabal ( Cucuta ) through artificial wetland plant species using Crysopogon zizanioides and Typha latifolia was performed using as the base model Michaelis- Menten kinetics explaining an enzymatic reaction , using the methodology of wastewater for mixing leachate. The equations of biological treatment of wastewater dependent kinetic and stoichiometric coefficients. These coefficients vary between different types of waste water, making it necessary to calculate by laboratory pilot tests that simulate wastewater treatment study.Once the biofilter stabilized after the seventh week of monitoring conducted the kinetic study four samples were taken for each of the retention times which were 5 to 1 day. The parameters analyzed were Chemical Oxygen Demand (COD) and volatile suspended solids (VSS) analyzed in the laboratories of the University Francisco de Paula Santander. With the data obtained from each retention time, we proceeded to perform the calculation of the kinetic coefficients and stoichiometric for substrate and biomass retention time that had the highest contaminant removal and the best correlation coefficient R was five days which we were analyzed for different authors: Orozco, Eckenfelder, McKinney giving better results for Eckenfelder substrate removal and Orozco for biomass production. After the monitoring period is determined that the plant species Typha Latifolia reached the maximum values of removal in most chemical and microbiological parameters evaluated; similarly Crysopogon Zizanioides removals had a lower minimum difference.</p>


2021 ◽  
Author(s):  
Emmanuel Delattre ◽  
Isabelle TECHER ◽  
Benjamin Reneaud ◽  
Patrick Verdoux ◽  
Isabelle Laffont-Schwob ◽  
...  

Abstract Anthropogenic activities can be the source of saline solid wastes that need to be treated to reduce their salt load to meet the purposes of reuse, valorization or storage. In this context, chloride remediation can be achieved using high-salt accumulating plants. However, there is very limited information on the comparative potential of different species in the same environment, and only scarce data concerning their efficiency as a function of growth stage. In order to rationalize these selection criteria, three macrophytes i.e. common reed (Phragmites australis), sea rush (Juncus maritimus) and cattail (Typha latifolia) were cultivated at two growth stages (6-months old and 1-year old) for 65 days in Cl- spiked substrates (from 0 up to 24 ‰ NaCl). The plants’ survival and potential capacity for removal of Cl- from substrates and accumulation in shoots were investigated. For the three studied species, mature and juvenile plants display a high tolerance to salinity. However, mature specimens with higher shoot biomass and Cl- contents are capable of greater chloride removal than juvenile plants. The sole exception is P. australis which displays just the same phytoremediation potential for both mature and juvenile specimens. Moreover, P. australis has the lowest potential when compared with other species, being 1.5 and 3 times lower than for J. maritimus and T. latifolia. When considering the plant growth and the shoot biomass production, chloride removal rates from the substrate point that mature J. maritimus should preferentially be used to design an operational chloride remediation system. The results highlight the relevance of considering the growth stage of plants used for Cl- removal.


2015 ◽  
Vol 14 (2) ◽  
pp. 176-190
Author(s):  
Zuzana Dürešová ◽  
Anna Šuňovská ◽  
Miroslav Horník ◽  
Martin Pipíška ◽  
Marcela Gubišová ◽  
...  

Abstract The aim of the present work was to compare the accumulation and translocation of Cd and Zn in plants of tobacco (Nicotiana tabacum L.), celery (Apium graveolens L.), maize (Zea mays L.), giant reed (Arundo donax L.), and alpine pennycress (Noccaea caerulescens L.) under conditions of short-term hydroponic experiments using nutrient solutions spiked with radionuclides 109Cd or 65Zn, and direct gamma-spectrometry. It was found that the time-course of metals accumulation in studied plants was not different in terms of target metal, but it was significantly different on the level of plant species. The highest values of Cd accumulation showed plants of giant reed, whereby the accumulation decreased in the order: giant reed > tobacco > alpine pennycress >> maize and celery. On the basis of concentration ratios (CR) [Me]shoot / [Me]root calculation for both metals, it was found that Cd and Zn were in prevailing part accumulated in the root tissues and only partially accumulated in the shoots, where the amount of accumulated Cd and Zn increased from the oldest developed leaves to the youngest developed leaves. The CR values corresponding to these facts were calculated in the range 0.06 – 0.27 for Cd and for Zn 0.06 – 0.48. In terms of plant species, the CR values obtained for Cd decreased in the order: maize > celery > tobacco and giant reed > alpine pennycress. The similarity between studied objects – individual plant species on the basis of the obtained variables defining Cd or Zn accumulation at different conditions of the experiments as well as the relationships between obtained variables and conditions of the experiments were subjected to multivariate analysis method – cluster analysis (CA). According to the findings and this analysis, it can be expected that plants of tobacco and giant reed will dispose with similar characteristics as plants of alpine pennycress, which are classified as Zn/Cd hyperaccumulators, in terms of Cd or Zn accumulation and other positive parameters for their utilization in phytoremediation processes and techniques.


2021 ◽  
Vol 7 ◽  
pp. 425-439
Author(s):  
Bhupen Roka ◽  
Alankar K. Jha ◽  
Dhani Raj Chhetri

The red panda is a lesser carnivore that has adapted to the herbivore diet and is distributed in the Himalayan and Hengduan mountain ranges. The study conducted on red panda in Singalila National Park recorded the highest encounter of the species within the altitude of 2800 to 3200 meters in the broad leaf deciduous and broad leaf coniferous forest. 22.22% of direct sightings of red pandas occurred on plant species belonging to the family Fagaceae and were followed by the family Ericaceae (18.52%). The plant species mostly preferred by the red panda in Singalila National Park were Lithocarpus pachyphyllus, Rhododendron arboreum, Abies densa, and Betulia utilis. During all seasons, the dominant plants found in the red panda pellets were Arundinaria maling and Arundinaria aristata. &nbsp;The distribution of the red panda is influenced by the presence of the preferred plant species, therefore, through this studies effort has been made to document the plant species used by the red panda in the wild habitat.


2021 ◽  
Vol 10 (3) ◽  
pp. 117-121
Author(s):  
Vera Valentinovna Solovieva

The paper describes the habitats of Vallisneria spiralis L., Impatiens glandulifera Royle, Pistia stratiotes L. discovered in recent years within the Samara Region. A brief review of the papers devoted to the migration activity of these plant species on the territory of the Russian Federation and the Volga basin is given. Impatiens glandulifera Royle is an annual hygrophyte. In the flora of the Samara Region it was first noted among local coastal plants in 2004 on one of the ponds of Samara on Mirnaya Street. The plant entered the reservoir from the adjacent garden plots of the private sector. Pistia stratiotes L. is an aquatic plant. In the flora of the Samara Region, a pistia was first found on September 17, 2006 in a city pond (near School № 154 of Samara) among thickets of Elodea canadensis Michx. and Typha latifolia L. growing at a depth of up to 50 cm. Vallisneria spiralis L. was first discovered within the Samara Region in September 2020. Long-term monitoring of the distribution of coastal-aquatic and aquatic macrophytes-migrants in the Middle Volga basin will allow us to more confidently attribute them to possible indicators of global and local climate warming and one of the examples when aquatic plant species move from south to north within the Volga basin.


2017 ◽  
Vol 12 (3) ◽  
pp. 628-632
Author(s):  
Ganesh Shanker Mishra ◽  
Abhishek James ◽  
H.B. Paliwal ◽  
Hemant Kumar

Present study is directed towards the analysis of the water quality of the Macferson Lake, Allahabad which is heavily polluted by human activity. The required water samples collected rendomly from different locations of the study area and analyzed in the department of Environmental Sciences and NRM, SHUATS, Allahabad. The Temperature, EC, pH, TDS, Turbidity, Total hardness, Mg Hardness, Ca Hardness, BOD, DO, Alkalinity, Chloride, and Total coliform of the water samples have been analyzed. To assess the quality of the water each parameter was compared with the standard prescribed by Central pollution control board (CPCB, 2012). It is found that the Water hyacinth and Typha latifolia aquatic plant species were showing higher dominancy over the Macferson Lake. Both are covering the maximum surface water area of the lake. It is also found that receives species like Lemna minor, Sagitaria latifolia and Hydro-cotyle ranunculoids are found in a very less quantity and restricted to limited areas of the Lake. The findings of the present study help in multi-dimensional aspects and uses water of aforesaid lake including domestic purpose.


Author(s):  
Mathilde Honoré ◽  
Thibaut Lecompte ◽  
Sylvie Pimbert

The common reed, Phragmites australis, is a plant species quite similar to the currently used bio-based aggregates and available on most continents. The purpose of this work is to characterise this common reed and compare its properties to other plants already studied for building use. This study presents the different properties focussing on Phragmites australis chemical composition, hydrophobicity nature and how this character could be explained. To that end, wettability and also water adsorption measurements were carried out on plant flour and aggregates in comparison to miscanthus, wood and hemp shiv properties. Formulations based on reeds of different origins and using different binders (lime and earth) were tested in compression and with thermal conductivity measurements in order to evaluate the behaviour of the reed as a material for building use.


Sign in / Sign up

Export Citation Format

Share Document