scholarly journals Effects of Three Production Systems on Muskmelon Yield and Quality in New England

HortScience ◽  
2016 ◽  
Vol 51 (5) ◽  
pp. 510-517 ◽  
Author(s):  
Mina Vescera ◽  
Rebecca Nelson Brown

Muskmelons (Cucumis melo L.) are routinely grown on black plastic mulch, as the associated increase in soil temperatures, more stable soil moisture, and decreased weed competition result in higher yields than in bare soil production. However, mulch does little to moderate air temperature, which can be below optimum for melon production under New England conditions. One option for increasing air temperature is to grow plants in unheated hoophouses, or high tunnels. Another option is to use low tunnels consisting of ventilated clear plastic rowcovers supported over wire hoops. This study compared low tunnels and high tunnels to open field production for muskmelon production in a peri-urban market farm system in Rhode Island. Five hybrid muskmelon cultivars were grown for 2 years to compare earliness, yield, and fruit quality among the three production systems. Both tunnel systems increased the rate at which growing degree-days (GDD) accumulated relative to open field production, and resulted in statistically significant differences in starting date of first harvest, with fruit in the high tunnel treatment ripening first. The high tunnel production system increased yields per hectare in both years relative to the other production systems due to increased planting density, but not due to increased yields per plant. Marketable yields per hectare from the high tunnel system significantly exceeded those from the open field for four out of the five cultivars in 2011, but for only one out of five cultivars in 2012. Marketable yields from the low tunnel system were ≈10% higher than the open field in 2011, and almost double the open field yields in 2012. Fruit from the low tunnels had the highest concentration of soluble solids in both years. The high tunnel production system did not increase yields sufficiently to offset the associated increase in costs of production, suggesting that muskmelon is not a good crop for high tunnel production in New England. In contrast, a yield increase of only 15% would be sufficient to offset the increased costs of employing the low tunnel production system. Low tunnels have the potential to greatly benefit muskmelon production in New England, particularly in years or locations where GDD accumulate slowly.

2012 ◽  
Vol 22 (2) ◽  
pp. 245-251 ◽  
Author(s):  
Héctor Germán Rodríguez ◽  
Jennie Popp ◽  
Michael Thomsen ◽  
Heather Friedrich ◽  
Curt R. Rom

Extending the production season of blackberry (Rubus subgenus Rubus) cultivars allows producers the opportunity to potentially receive better prices. Producers could benefit from out-of-season production by sustaining cash flow during more of the year and thereby expanding their market. The objective of this study was to compare the present value (PV) probabilities of being able to cover the total cost (TC) of production (break-even) for open-field and high tunnel production systems for the primocane-fruiting blackberry cultivar Prime-Jan® in northwestern Arkansas. (PVs) of gross revenues (GRs) of each production system were simulated 500 times. Total yields were higher in the open-field system in the first 2 years of production and consistently higher in weeks 33 to 34 and 36 to 37 than high tunnel production. It seems that there are no yield benefits from the high tunnel system early in the harvest season, except in the first year of primocane-fruiting production. The break-even probability was sensitive to the different percentage of yield sold, the percentage of the retail price received by the producer, and the production system analyzed. Even though the potential gross returns obtained with the high tunnel system are high (when compared with open-field production), the PV distributions of the gross returns do not offset the high tunnel TC in half of the simulations. Conversely, open-field production proves to be more profitable both in magnitude and in terms of the likelihood of exceeding the break-even threshold over the productive life of the enterprise.


2012 ◽  
Vol 22 (5) ◽  
pp. 659-668 ◽  
Author(s):  
Russell W. Wallace ◽  
Annette L. Wszelaki ◽  
Carol A. Miles ◽  
Jeremy S. Cowan ◽  
Jeffrey Martin ◽  
...  

Field studies were conducted during 2010 and 2011 in Knoxville, TN; Lubbock, TX; and Mount Vernon, WA; to compare high tunnel and open-field organic production systems for season extension and adverse climate protection on lettuce (Lactuca sativa) yield and quality. The climates of these locations are diverse and can be typified as hot and humid (Knoxville), hot and dry (Lubbock), and cool and humid (Mount Vernon). In both years, 6-week-old lettuce seedlings of ‘New Red Fire’ and ‘Green Star’ (leafy type), ‘Adriana’ and ‘Ermosa’ (butterhead type), and ‘Coastal Star’ and ‘Jericho’ (romaine type) were transplanted in the late winter or early spring into subplots covered with black plastic and grown to maturity (43 to 65 days). Lettuce harvest in Knoxville occurred at 50 to 62 days after transplanting (DAT), with open-field lettuce harvested an average of 9 days earlier compared with high tunnel plots both years (P > 0.0001). The earlier than anticipated harvests in the open-field in Knoxville in 2010 were due to lettuce bolting. In Lubbock, high tunnel lettuce was harvested an average 16 days earlier in 2010 compared with open-field lettuce (P > 0.0001), while in 2011, high temperatures and bolting required that open-field lettuce be harvested 4 days earlier than lettuce grown in high tunnels. On average, lettuce cultivars at Mount Vernon matured and were harvested 56 to 61 DAT in 2010 and 54 to 64 DAT in 2011 with no significant differences between high tunnel and open-field production systems. Total and marketable yields at Mount Vernon and Lubbock averaged across cultivars were comparable in both high tunnel and open-field plots. At Knoxville, although total yields were significantly higher (P > 0.0062) in high tunnels than open-field plots, incidence of insect, disease, and physiological damage in high tunnel plots reduced lettuce quality and marketable yield (P > 0.0002). Lettuce head length:diameter ratio (LDR) averaged across cultivars was equal between high tunnel and the open field at all three locations. High tunnel production systems offer greater control of environments suitable for lettuce production, especially in climates like Knoxville and Lubbock where later-planted open-field systems may be more susceptible to temperature swings that may affect lettuce quality. These results suggest that although high tunnel culture alone may influence lettuce yield and quality, regional climates likely play a critical role in determining the impact of these two production systems on marketable lettuce yields.


2013 ◽  
Vol 23 (4) ◽  
pp. 453-461 ◽  
Author(s):  
Suzette P. Galinato ◽  
Carol A. Miles

Lettuce (Lactuca sativa) and tomato (Solanum lycopersicum) are popular fresh market vegetable crops. In western Washington, there is interest in growing them in high tunnel production systems because of the region’s mild, coastal climate. The objectives of this study were to contrast the economic potential of growing lettuce and tomato under high tunnel and open-field production systems, and identify the main factors affecting profitability within each production system. Economic data for this study were collected by interviewing experienced lettuce and tomato growers in western Washington during focus group sessions. Costs of production varied by crop and production system, and findings indicated that it was five times more costly to grow lettuce and eight times more costly to grow tomato in a high tunnel than in the open field in western Washington. For lettuce, the labor cost per square foot of growing area was found to be 6 times greater in a high tunnel than in the open field; and for tomato, labor costs were 10 times greater in a high tunnel than in the open field. Total labor cost comprised more than 50% of the total production costs of lettuce and tomato in both the high tunnel and open-field systems. The percentage of total labor cost was similar in both the high tunnel and open-field production for lettuce, but was higher in high tunnel tomato production than in the open field. Tunnel-grown lettuce and tomato had three and four times greater marketable yield compared with field-grown, respectively. Given the base crop yield and average price, it was 43% more profitable to grow lettuce in the open field than in the high tunnel, while in contrast, high tunnel-grown tomato was three times more profitable than open-field tomato production.


2013 ◽  
Vol 23 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Olha Sydorovych ◽  
Cary L. Rivard ◽  
Suzanne O’Connell ◽  
Chris D. Harlow ◽  
Mary M. Peet ◽  
...  

In this study, we conducted an economic analysis of high tunnel and open-field production systems of heirloom tomato (Solanum lycopersicum) based on a two-year study at the Center for Environmental Farming Systems (CEFS) located in Goldsboro, eastern North Carolina. The research site was transitional organic using organically certified inputs and practices on land not yet certified. Production costs and returns were documented in each system and provide a useful decision tool for growers. Climatic conditions varied dramatically in 2007 compared with 2008 and differentially affected total and marketable yields in each system. Profits were higher in the open-field system and the high tunnels in 2007 and 2008, respectively. Sensitivity analysis was conducted using a range of market prices from $1.60/lb to $3.60/lb and a range of fruit marketability levels from 35% to 80%. Both systems were profitable except at the lowest price point and the lowest percent marketability level in high tunnel in 2007. At $2.60/lb, seasonal average sale price reported by growers for this region, and depending on percent marketability levels, the payback period for high tunnels ranged from two to five years. Presented sensitivity tables will enable decision makers to knowledgably estimate economic potential of open-field and high tunnel systems based on expected local prices and fruit quality parameters.


2009 ◽  
Vol 19 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Xin Zhao ◽  
Edward E. Carey

High tunnels have been shown to be a profitable season-extending production tool for many horticultural crops. Production of cool-season vegetables during the hot summer months represents a challenge to market growers in the midwestern United States. Two experiments were conducted to investigate the microclimate and production of eight leaf lettuce (Lactuca sativa) cultivars in high tunnels and open fields, using unshaded and shaded (39% white shadecloth) tunnels in Summer 2002 and 2003, respectively. Wind speed was consistently lower in high tunnels with the sidewalls and endwalls open. An unshaded high tunnel resulted in an increase of daily maximum and minimum air temperatures by ≈0.2 and 0.3 °C, respectively, in comparison with the open field. In contrast, daily maximum air temperature in a shaded high tunnel decreased by 0.4 °C, while the daily minimum air temperature was higher than that in the open field by 0.5 °C. Using high tunnels did not cause a marked change in relative humidity compared with the open field. When using shadecloth, the daily maximum soil temperature was lowered by ≈3.4 °C and the leaf surface temperature was reduced by 1.5 to 2.5 °C. The performance of lettuce during summer trials varied significantly among cultivars. Unshaded high tunnels generally led to more rapid bolting and increased bitterness of lettuce compared with the open field. Lettuce grown in high tunnels covered by shadecloth had a lower bolting rate, but decreased yield relative to the open field. Based on our results, summer lettuce production would not be recommended in high tunnels or open fields in northeastern Kansas, although the potential of shaded high tunnels deserves further studies. Reference crop evapotranspiration (ET0) was estimated from meteorological data on a daily basis using the FAO-56 method. The ET0 was lowest in the shaded high tunnel and was the highest in the open field. Relatively lower ET0 in high tunnels indicated a likely lower water requirement and therefore improved water use efficiency compared with the open field.


HortScience ◽  
2016 ◽  
Vol 51 (3) ◽  
pp. 245-254 ◽  
Author(s):  
Jeremy S. Cowan ◽  
Arnold M. Saxton ◽  
Hang Liu ◽  
Karen K. Leonas ◽  
Debra Inglis ◽  
...  

The functionality of biodegradable mulch can be evaluated in agricultural field settings by visually assessing mulch intactness over time (a measure of deterioration), but it is unclear if mulch deterioration is indicative of mulch degradation as measured by mechanical properties (like breaking force and elongation). This 3-year study (2010–12) examined mulch percent visual deterioration (PVD) during the summer growing season in open-field and high tunnel production systems, and compared these to mulch mechanical properties at mulch installation (12–30 May), midseason (22 July–9 Aug.), and season end (6–25 Oct.), to determine if the field-based measures reliably predict degradation as revealed by changes in mulch mechanical properties. Four different types of biodegradable mulches [two plastic film mulches marketed as biodegradable (BioAgri and BioTelo); one fully biodegradable paper mulch (WeedGuardPlus); and, one experimental spunbonded plastic mulch designed to biodegrade (SBPLA)] were evaluated against a standard nonbiodegradable polyethylene (PE) mulch where tomato (Solanum lycopersicum L. cv. Celebrity) was planted as the model crop. Each year for the 3 years, PVD increased earlier for WeedGuardPlus than the other mulches in both the high tunnel and open field, and WeedGuardPlus had the greatest PVD in both high tunnels and the open field (6% and 48%, respectively). Mechanical strength of WeedGuardPlus also declined by the end of the season both in the high tunnel (up to 46% reduction) and in the open field (up to 81% reduction). PVD of BioAgri and BioTelo reached a maximum of 3% in the high tunnel and 28% in the open field by the end of the season. Mechanical strength of BioAgri and BioTelo did not change over the course of the season in either the open field or high tunnel, even though the ability of these mulches to elongate or stretch declined 89% in the open field and 82% in the high tunnel. SBPLA and PE mulches did not show a change in PVD or mechanical properties in either the high tunnel or the open field. Overall, PVD was three to six times greater by midseason in the open field than in the high tunnels. Although there were significant relationships between visual assessments and various mechanical properties for each mulch except SBPLA, the relationships differed for each mulch when evaluated separately and had coefficients of determination (R2) below 30%. Furthermore, PVD overestimated mechanical deterioration of BioAgri and BioTelo. Results of this study indicate that mulch visual assessments may reflect general trends in changes in certain mechanical properties of the mulch; however, visual assessment and mechanical properties provide different information on deterioration. Each should be used as needed, but not as a substitute for each other.


2020 ◽  
Vol 30 (4) ◽  
pp. 492-503
Author(s):  
Craig J. Frey ◽  
Xin Zhao ◽  
Jeffrey K. Brecht ◽  
Dustin M. Huff ◽  
Zachary E. Black

Although grower interest in high tunnel tomato (Solanum lycopersicum) production has increased in recent years, systematic high tunnel research conducted in humid, subtropical regions has been limited. The potential of tomato grafting to mitigate biotic and abiotic stresses makes it complementary to high-value production systems in high tunnels. In this 2-year study, grafted vs. nongrafted organic tomato production in high tunnels and open fields was investigated to determine possible synergistic effects of these two technologies. In 2016, high tunnels resulted in a significant increase of total and marketable yields, by 43% and 87%, respectively, over open field production. Grafting also significantly increased total and marketable yields over nongrafted plants by 34% and 42%, respectively. Cultivar effects demonstrated greater benefits with the implementation of high tunnel and grafting technologies for ‘Tribute’ (a beefsteak-type tomato) than for ‘Garden Gem’ (a plum-type tomato), as the increase in marketable yield was 33% greater for ‘Tribute’ in high tunnels and 45% greater for ‘Tribute’ with grafting. In 2017, a delayed effective transplanting date and the lack of high tunnel summer season extension produced results that were generally cultivar specific. While grafting increased the total yield of both cultivars (by 18%), marketable yield was increased by grafting only for ‘Tribute’ in high tunnels (by 42%). Additionally, high tunnels improved marketable yield of ‘Tribute’ by 129% but had no effect on ‘Garden Gem’. This demonstrated the consistent trend of the beefsteak-type tomato benefiting more from the combination of high tunnel and grafting technologies than the plum-type tomato. High tunnels reduced fruit decay and cracking by up to 71% compared with open field production. Stink bug (Pentatomidae) damage had the greatest impact on marketable yields each season, reaching 13% and 34% of total yields in 2016 and 2017, respectively, and was unaffected by high tunnel production or grafting. This study revealed the benefits of integrating high tunnel and grafting technologies for enhancing organic production of fresh-market tomato in the humid subtropics, and demonstrated more research is warranted to establish regional planting dates and further optimize this high-value cropping system.


2013 ◽  
Vol 14 (1) ◽  
pp. 7
Author(s):  
Marianne Powell ◽  
Jeremy Cowan ◽  
Carol Miles ◽  
Debra Ann Inglis

Incidence of gray mold and lettuce drop, and yield of six cultivars representing market classes Boston/Crisphead, Leaf, and Romaine, were evaluated in open ended high tunnel and open field organic production systems near Mount Vernon, WA from 2010 to 2012. Each year seedlings were transplanted in April and heads harvested in June/July. In 2010, Romaine types had significantly (P < 0.0001) greater incidence of gray mold (caused by Botrytis cinerea) than other types. In 2011, incidence of gray mold was significantly (P = 0.004) greater in high tunnel than open field plots, and greatest in high tunnels when fog persisted. All cultivars were equally susceptible to lettuce drop (caused by Sclerotinia sclerotiorum), although in 2012, incidence was significantly (P < 0.0001) greater in high tunnel than open field plots. ‘Green Star’ (Leaf type) had reduced incidence of gray mold and lettuce drop in 2010 and 2011. Incidence of tipburn was significantly (P = 0.032 and P = 0.001, respectively) greater in the high tunnels in 2011 and 2012 compared to the open field. Total yield (kg) was greater in the open field in 2012, but not in 2011 and 2010. Accepted for publication 8 July 2013. Published 22 September 2013.


1996 ◽  
Vol 6 (3) ◽  
pp. 172-176 ◽  
Author(s):  
Otho S. Wells

Rowcovers and high tunnels are two intensive production systems used by commercial growers to extend the season and to improve yields of vegetables and strawberries. There are many types of rowcovers. These materials are summarized with descriptive information, primary use, and cost. The basics of high tunnel construction are presented to facilitate setting up a high-tunnel system.


HortScience ◽  
2017 ◽  
Vol 52 (11) ◽  
pp. 1511-1517 ◽  
Author(s):  
Suzanne O’Connell ◽  
Robert Tate

There is a lack of information related to adapting high tunnel systems to humid, subtropical climates in the Southeastern United States, resulting in a disadvantage for their use to extend growing seasons and meet the increasing demand for local horticulture products. This research project explored the possibility of growing organic broccoli and cauliflower (Brassica oleracea L.) under high tunnels during two consecutive fall/winter seasons in northeast Georgia (USDA plant hardiness zone 8a), particularly evaluating questions related to crop feasibility, planting dates and cultivar choices. Marketable yields for high tunnel broccoli ranged from ≈11,800 to 15,800 kg·ha−1 and were not consistently affected by either planting date or cultivar type. Broccoli required an additional 8–45 days to reach maturity compared with seed catalog estimates with harvesting occurring during mid-December to mid-January. Marketable yields for high tunnel cauliflower ranged from ≈8600 to 26,000 kg·ha−1 and were affected primarily by the cultivar type. Cauliflower required an additional 19–56 days to mature with harvesting occurring during the entire month of January. The first season was cooler than the second with the lowest growing degree days (GDD) units accumulated during the months of January and February. Differences in air temperature at the crop canopy between the high tunnel system and open field were largely related to high tunnel ventilation protocols that changed as the season progressed. An average heat gain of 7 to 8 °C under the high tunnels at crop canopy height was documented on the coldest days and an average of 1 °C gain on the warmest days compared with the open field. Overall, winter broccoli appeared more adaptable to high tunnels than cauliflower but production of both crops may be possible if planting dates and cultivar types are taken into account for the region.


Sign in / Sign up

Export Citation Format

Share Document