scholarly journals Initial Substrate Moisture Content Affects Chemical Properties of Bagged Substrates Containing Controlled Release Fertilizer at Two Different Temperatures

HortScience ◽  
2017 ◽  
Vol 52 (10) ◽  
pp. 1429-1434
Author(s):  
Ka Yeon Jeong ◽  
James E. Altland

Bagged potting mixes can be stored for weeks or months before being used by consumers. Some bagged potting mixes are amended with controlled release fertilizers (CRFs). The objective of this research was to determine how initial substrate moisture content and storage temperature affect the chemical properties of bagged potting mix with CRF incorporated and stored for up to 180 days. The base substrate composed of 60 sphagnum peat: 30 bark : 10 perlite (by vol.) amended with 5.5 g·L−1 dolomitic limestone and 0.5 g·L−1 granular wetting agent. This base substrate was either not amended with additional fertilizer (control) or amended with 0.59 kg·m−3 N of a CRF (Osmocote 18N–1.3P–5K) that was either ground (CRF-G) or whole prills (CRF-P). Substrates had initial moisture contents (IMCs) of 25%, 45%, or 65% and were stored at temperatures of either 20 or 40 °C. IMC and fertilizer type affected pH, electrical conductivity (EC), and nutrient release. Substrate pH increased with increasing IMC due to greater lime reactivity. About 25% of N from CRF-G treatments was immobilized between 2 and 14 days of storage. Low moisture content of bags, due to low IMC or storage at 40 °C, reduced the rate of N release from CRF-P treatments. Substrate P was rapidly immobilized by microbial communities.

HortScience ◽  
2018 ◽  
Vol 53 (8) ◽  
pp. 1191-1196
Author(s):  
James E. Altland ◽  
Ka Yeon Jeong

Bagged potting mixes can be stored for weeks or months before being used by consumers. Some bagged potting mixes are amended with organic fertilizers such as poultry litter (PL), although there is little knowledge about how these and other organic fertilizers release in the substrate while in storage. The objective of this research was to determine nutrient availability from an organic PL fertilizer in a bagged potting substrate stored at different temperatures and with varying initial moisture content (IMC). The base substrate composed of 60 sphagnum peat : 30 bark : 10 perlite (by vol.) amended with 5.5 g·L−1 dolomitic limestone and 0.5 g·L−1 granular wetting agent. This base substrate was either not amended with additional fertilizer [nonfertilized control (NFC)] or amended with a PL fertilizer (microSTART60, 3N–0.9P–2.5K) in its original pelletized form (PL-P) or ground (PL-G), or an uncoated prill fertilizer (UPF, 15N–6.5P–12.5K). Substrates had IMCs of 25%, 45%, or 65% (by weight) and were stored at either 20 or 40 °C. The UPF treatment resulted in lower pH, higher electrical conductivity (EC), and higher percent recovered nitrogen (N) compared with other treatments, as was expected with a readily soluble fertilizer. Poultry litter particle size had no effect on any of the measured chemical properties of the stored substrates. Both PL fertilizer treatments resulted in pH similar to or lower than the NFC. The two PL fertilizers had higher EC throughout the experiment (1.59–2.76 mS·cm−1) than NFC (0.13–0.35 mS·cm−1). Poultry litter fertilizer provided a stable source of N in bagged potting mix over a range of IMC and storage temperatures, with little change in total N released over time.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2421
Author(s):  
Bohan Shao ◽  
Caterina Valeo ◽  
Phalguni Mukhopadhyaya ◽  
Jianxun He

The influence of moisture content on substrate thermal conductivity at different temperatures was investigated for four different commercially available substrates for green roofs. In the unfrozen state, as moisture content increased, thermal conductivity increased linearly. In the phase transition zone between +5 and −10 °C, as temperature decreased, thermal conductivity increased sharply during the transition from water to ice. When the substrate was frozen, thermal conductivity varied exponentially with substrate moisture content prior to freezing. Power functions were found between thermal conductivity and temperature. Two equally sized, green roof test cells were constructed and tested to compare various roof configurations including a bare roof, varying media thickness for a green roof, and vegetation. The results show that compared with the bare roof, there is a 75% reduction in the interior temperature’s amplitude for the green roof with 150 mm thick substrate. When a sedum mat was added, there was a 20% reduction in the amplitude of the inner temperature as compared with the cell without a sedum mat.


HortScience ◽  
2014 ◽  
Vol 49 (12) ◽  
pp. 1568-1574 ◽  
Author(s):  
Luther C. Carson ◽  
Monica Ozores-Hampton ◽  
Kelly T. Morgan ◽  
Jerry B. Sartain

Determination of nutrient release duration from controlled-release fertilizers (CRFs) or soluble fertilizers encapsulated in polymer, resin, or sulfur covered fertilizer coated with a polymer differs among manufacturers, but may be determined as 75% to 80% nitrogen (N) release at a constant temperature (e.g., 20 to 25 °C). Increases or decreases in temperature compared with the manufacturer release determination temperature increase or decrease CRF N release; thus, coated fertilizer may release more rapidly than stated during the fall season when soil temperatures in seepage-irrigated tomato (Solanum lycopersicum) production can reach 40.1 °C. The objectives of this study were to evaluate N release duration of CRFs by measuring N release from CRFs incubated in pouches under polyethylene mulch-covered raised beds and to determine the CRF duration suitable for incorporation into a fall tomato fertility program. In 2011 and 2013, 12 and 14 CRFs from Agrium Advanced Technologies, Everris, Florikan, and Chisso-Asahi Fertilizer were sealed in fiberglass mesh pouches (12.7 × 14 cm) that were buried 10 cm below the bed surface in a tomato crop grown using commercial production practices. A data logger collected soil temperature 10 cm below the bed surface. Pouches were collected and N content was measured eight times through two fall seasons. A nonlinear regression model was fit to the data to determine N release rate. During the 2011 and 2013 seasons, minimum, average, and maximum soil temperatures were 21.2 and 19.2, 25.7 and 23.5, and 32.2 and 27.7 °C, respectively. Seasonal total CRF N release was between 77.6% and 93.8% during 2011 and 58.3% and 94.3% in 2013. In 2011, PCU90 and in 2013, PCU90 and PCNPK120 had the highest seasonal total percentage N release (PNR) and FL180 had the lowest in both years. A nonlinear regression fit N release from CRF with R2 = 0.85 to 0.99 during 2011 and 0.49 to 0.99 during 2013. Nitrogen release from all CRFs was faster than the manufacturer’s stated release, probably as a result of high fall bed temperatures. A CRF or CRF mixture containing CRFs of 120- to 180-day release duration may be recommended, but the CRFs must release greater than 75% N during the season.


2014 ◽  
Vol 24 (1-2) ◽  
pp. 149-158
Author(s):  
MAK Talukder ◽  
MA Hashem ◽  
SME Rahman ◽  
MS Islam ◽  
MM Hossain ◽  
...  

The experiment was conducted to find out the effect of salt and storage temperature on the physico-chemical properties of beef nugget. For this purpose nugget samples were divided into two parts; one is called fresh nugget and another is preserved nugget at different temperatures. Then the fresh samples as well as the preserved samples were divided into four subdivisions. Then these are treated with different salt levels (0, 1.5, 3 and 5% salt level). The preserved samples were stored at 4oC and -20oC. Samples preserved at 4oC were stored in the refrigerator for 21 days and were analyzed on 7th day, 14th day and 21th day and samples preserved at -20oC were stored in the refrigerator for 60 days and were analyzed on 15th day, 30th day, 45th day and 60th day of preservation. Dry matter and Ash content of all the samples increased significantly (P<0.01) with the advancement of storage time and salt level. CP% of fresh samples was 22.31, 20.55, 20.13 and 20.55 at 0, 1.5, 3 and 5% salt concentration. CP, DM, Ash and Fat also varied among the samples significantly (P<0.01). Highly significant difference is observed in preserved samples than in fresh samples at different salt levels. Fresh nugget treated with 1.5% salt found to be more acceptable in terms of sensory evaluation. So we recommend fresh nugget to be best for consumption.DOI: http://dx.doi.org/10.3329/pa.v24i1-2.19280 Progress. Agric. 24(1&2): 149 - 158, 2013


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Gabriela L. Vitcosque ◽  
Rafael F. Fonseca ◽  
Ursula Fabiola Rodríguez-Zúñiga ◽  
Victor Bertucci Neto ◽  
Sonia Couri ◽  
...  

Biomass-degrading enzymes are one of the most costly inputs affecting the economic viability of the biochemical route for biomass conversion into biofuels. This work evaluates the effects of operational conditions on biomass-degrading multienzyme production by a selected strain of Aspergillus niger. The fungus was cultivated under solid-state fermentation (SSF) of soybean meal, using an instrumented lab-scale bioreactor equipped with an on-line automated monitoring and control system. The effects of air flow rate, inlet air relative humidity, and initial substrate moisture content on multienzyme (FPase, endoglucanase, and xylanase) production were evaluated using a statistical design methodology. Highest production of FPase (0.55 IU/g), endoglucanase (35.1 IU/g), and xylanase (47.7 IU/g) was achieved using an initial substrate moisture content of 84%, an inlet air humidity of 70%, and a flow rate of 24 mL/min. The enzymatic complex was then used to hydrolyze a lignocellulosic biomass, releasing 4.4 g/L of glucose after 36 hours of saccharification of 50 g/L pretreated sugar cane bagasse. These results demonstrate the potential application of enzymes produced under SSF, thus contributing to generate the necessary technological advances to increase the efficiency of the use of biomass as a renewable energy source.


2014 ◽  
Vol 97 (3) ◽  
pp. 677-686 ◽  
Author(s):  
L Carolina Medina ◽  
Jerry B Sartain ◽  
Thomas A Obreza ◽  
Emily Leary ◽  
William L Hall ◽  
...  

Abstract Several technologies have been proposed to characterize the nutrient release patterns of enhanced-efficiency fertilizers (EEFs) during the last few decades. These technologies have been developed mainly by manufacturers and are product- specific based on the regulation and analysis of each EEF product. Despite previous efforts to characterize nutrient release of slow-release fertilizer (SRF) and controlled-release fertilizer (CRF) materials, no official method exists to assess their nutrient release patterns. However, the increased production and distribution of EEFs in specialty and nonspecialty markets requires an appropriate method to verify nutrient claims and material performance. Nonlinear regression was used to establish a correlation between the data generated from a 180-day soil incubation-column leaching procedure and 74 h accelerated lab extraction method, and to develop a model that can predict the 180-day nitrogen (N) release curve for a specific SRF and CRF product based on the data from the accelerated laboratory extraction method. Based on the R2 &gt; 0.90 obtained for most materials, results indicated that the data generated from the 74 h accelerated lab extraction method could be used to predict N release from the selected materials during 180 days, including those fertilizers that require biological activity for N release.


2014 ◽  
Vol 97 (3) ◽  
pp. 661-676 ◽  
Author(s):  
L Carolina Medina ◽  
Jerry B Sartain ◽  
Thomas A Obreza ◽  
William L Hall ◽  
Nancy J Thiex

Abstract Several technologies have been proposed to characterize the nutrient release and availability patterns of enhanced-efficiency fertilizers (EEFs), especially slow-release fertilizers (SRFs) and controlled-release fertilizers (CRFs) during the last few decades. These technologies have been developed mainly by manufacturers and are product-specific based on the regulation and analysis of each EEF product. Despite previous efforts to characterize EEF materials, no validated method exists to assess their nutrient release patterns. However, the increased use of EEFs in specialty and nonspecialty markets requires an appropriate method to verify nutrient claims and material performance. A series of experiments were conducted to evaluate the effect of temperature, fertilizer test portion size, and extraction time on the performance of a 74 h accelerated laboratory extraction method to measure SRF and CRF nutrient release profiles. Temperature was the only factor that influenced nutrient release rate, with a highly marked effect for phosphorus and to a lesser extent for nitrogen (N) and potassium. Based on the results, the optimal extraction temperature set was: Extraction No. 1—2:00 h at 25°C; Extraction No. 2—2:00 h at 50°C; Extraction No. 3—20:00 h at 55°C; and Extraction No. 4—50:00 h at 60°C. Ruggedness of the method was tested by evaluating the effect of small changes in seven selected factors on method behavior using a fractional multifactorial design. Overall, the method showed ruggedness for measuring N release rates of coated CRFs.


2017 ◽  
Vol 39 (3) ◽  
pp. 288-296
Author(s):  
Francisco Humberto Dübbern de Souza ◽  
Giselle Mariano Lessa de Assis ◽  
Judson Ferreira Valentin ◽  
Cláudio Cavariani

Abstract: The goal of this work was to evaluate the storage effects under different temperatures, relative humidities (RH) and packaging types on the seed physiological quality and pod moisture content of Arachis pintoi cv. BRS Mandobi. The fruit of this herbaceous, perennial, leguminous species consists of an indehiscent pod containing a single seed, which is not dehulled for planting purposes. Pod samples presenting an initial 5.8% moisture content and stored under atmospheres presenting 30, 50, 70, 80 and 90% RH at 21±2 °C reached, respectively, the following equilibrium moisture content (EMC): 5.1±0.3%, 6.2±0.2%, 7.4±0.3%, 8.5±0.2% and 11.6±0.4%. Pod components (pericarp and seed) differed from one another in terms of EMC when stored under the same RH’s; on an average, the pericarp EMC was 4.2% higher than that of the seed. A drastic physiological quality reduction was observed in seeds contained in pods that presented a 6.9% moisture content when storage temperature was raised from 21±2 °C to 30±3 °C. The physiological quality of seeds was preserved for a longer time in semi-permeable packages; this contributed either to maintain low EMC’s or to delay reaching higher pod EMC’s, depending on the RH under which they were stored.


2014 ◽  
Vol 97 (3) ◽  
pp. 643-660 ◽  
Author(s):  
L Carolina Medina ◽  
Jerry B Sartain ◽  
Thomas A Obreza ◽  
William L Hall ◽  
Nancy J Thiex

Abstract Several technologies have been proposed to characterize the nutrient release patterns of slow- release fertilizers (SRF) and controlled-release fertilizers (CRF) during the last few decades. These technologies have been developed mainly by manufacturers, and are product-specific, based on the regulation and analysis of each SRF and CRF product. Despite previous efforts to characterize SRF and CRF materials, no standardized, validated method exists to assess their nutrient release patterns. However, the increased production and distribution of these materials in specialty and nonspecialty markets requires an appropriate method to verify product claims and material performance. A soil incubation column leaching procedure was evaluated to determine its suitability as a standard method to estimate nitrogen (N) release patterns of SRFs and CRFs during 180 days. The influence of three soil/sand ratios, three incubation temperatures, and four soils on method behavior was assessed using five SRFs and three CRFs. In general, the highest soil/sand ratio increased the N release rate of all materials, but this effect was more marked for the SRFs. Temperature had the greatest influence on N release rates. For CRFs, the initial N release rates and the percentage N released/day increased as temperature increased. For SRFs, raising the temperature from 25 to 35°C increased initial N release rate and the total cumulative N released, and almost doubled the percentage released/day. The percentage N released/day from all products generally increased as the texture of the soil changed from sandy to loamy (Iowa&gt;California&gt;Pennsylvania&gt;Florida). The soil incubation technique was demonstrated to be robust and reliable for characterizing N release patterns from SRFs and CRFs. The method was reproducible, and variations in soil/sand ratio, temperature, and soil had little effect on the results.


2017 ◽  
Vol 41 (3) ◽  
pp. 298
Author(s):  
Triana Setyawardani ◽  
Juni Sumarmono ◽  
Agustinus Hantoro Djoko Rahardjo ◽  
Mardiati Sulistyowati ◽  
Kusuma Widayaka

The objective of this research was to investigate the chemical, physical and sensory properties of goat milk kefir  during storage under different temperatures and storage time. Experimental method, applied completely randomized factorial design. The first factor was temperature (-1 to -5oC; 5 to 10oC and 6 to 10oC) and the second factor was storage time (10; 20 and 30 days) followed by Duncan test. Result showed that temperature, storage time and interaction highly significantly affected (P<0.01) the level of ethanol and FFA, but not affected (P>0.05) on protein content, fat and ash but CO2 level, texture and flavor of kefir were affected by storage time. Kefir viscosity was only affected by storage temperature (P<0.05). Research concluded that storage temperature affected chemical properties such as ethanol, FFA and kefir viscosity,while kefir sensory properties was predominantly affected by storage 


Sign in / Sign up

Export Citation Format

Share Document