Optimization and Validation of an Accelerated Laboratory Extraction Method to Estimate Nitrogen Release Patterns of Slow- and Controlled-Release Fertilizers

2014 ◽  
Vol 97 (3) ◽  
pp. 661-676 ◽  
Author(s):  
L Carolina Medina ◽  
Jerry B Sartain ◽  
Thomas A Obreza ◽  
William L Hall ◽  
Nancy J Thiex

Abstract Several technologies have been proposed to characterize the nutrient release and availability patterns of enhanced-efficiency fertilizers (EEFs), especially slow-release fertilizers (SRFs) and controlled-release fertilizers (CRFs) during the last few decades. These technologies have been developed mainly by manufacturers and are product-specific based on the regulation and analysis of each EEF product. Despite previous efforts to characterize EEF materials, no validated method exists to assess their nutrient release patterns. However, the increased use of EEFs in specialty and nonspecialty markets requires an appropriate method to verify nutrient claims and material performance. A series of experiments were conducted to evaluate the effect of temperature, fertilizer test portion size, and extraction time on the performance of a 74 h accelerated laboratory extraction method to measure SRF and CRF nutrient release profiles. Temperature was the only factor that influenced nutrient release rate, with a highly marked effect for phosphorus and to a lesser extent for nitrogen (N) and potassium. Based on the results, the optimal extraction temperature set was: Extraction No. 1—2:00 h at 25°C; Extraction No. 2—2:00 h at 50°C; Extraction No. 3—20:00 h at 55°C; and Extraction No. 4—50:00 h at 60°C. Ruggedness of the method was tested by evaluating the effect of small changes in seven selected factors on method behavior using a fractional multifactorial design. Overall, the method showed ruggedness for measuring N release rates of coated CRFs.

2014 ◽  
Vol 97 (3) ◽  
pp. 643-660 ◽  
Author(s):  
L Carolina Medina ◽  
Jerry B Sartain ◽  
Thomas A Obreza ◽  
William L Hall ◽  
Nancy J Thiex

Abstract Several technologies have been proposed to characterize the nutrient release patterns of slow- release fertilizers (SRF) and controlled-release fertilizers (CRF) during the last few decades. These technologies have been developed mainly by manufacturers, and are product-specific, based on the regulation and analysis of each SRF and CRF product. Despite previous efforts to characterize SRF and CRF materials, no standardized, validated method exists to assess their nutrient release patterns. However, the increased production and distribution of these materials in specialty and nonspecialty markets requires an appropriate method to verify product claims and material performance. A soil incubation column leaching procedure was evaluated to determine its suitability as a standard method to estimate nitrogen (N) release patterns of SRFs and CRFs during 180 days. The influence of three soil/sand ratios, three incubation temperatures, and four soils on method behavior was assessed using five SRFs and three CRFs. In general, the highest soil/sand ratio increased the N release rate of all materials, but this effect was more marked for the SRFs. Temperature had the greatest influence on N release rates. For CRFs, the initial N release rates and the percentage N released/day increased as temperature increased. For SRFs, raising the temperature from 25 to 35°C increased initial N release rate and the total cumulative N released, and almost doubled the percentage released/day. The percentage N released/day from all products generally increased as the texture of the soil changed from sandy to loamy (Iowa>California>Pennsylvania>Florida). The soil incubation technique was demonstrated to be robust and reliable for characterizing N release patterns from SRFs and CRFs. The method was reproducible, and variations in soil/sand ratio, temperature, and soil had little effect on the results.


HortScience ◽  
2014 ◽  
Vol 49 (12) ◽  
pp. 1568-1574 ◽  
Author(s):  
Luther C. Carson ◽  
Monica Ozores-Hampton ◽  
Kelly T. Morgan ◽  
Jerry B. Sartain

Determination of nutrient release duration from controlled-release fertilizers (CRFs) or soluble fertilizers encapsulated in polymer, resin, or sulfur covered fertilizer coated with a polymer differs among manufacturers, but may be determined as 75% to 80% nitrogen (N) release at a constant temperature (e.g., 20 to 25 °C). Increases or decreases in temperature compared with the manufacturer release determination temperature increase or decrease CRF N release; thus, coated fertilizer may release more rapidly than stated during the fall season when soil temperatures in seepage-irrigated tomato (Solanum lycopersicum) production can reach 40.1 °C. The objectives of this study were to evaluate N release duration of CRFs by measuring N release from CRFs incubated in pouches under polyethylene mulch-covered raised beds and to determine the CRF duration suitable for incorporation into a fall tomato fertility program. In 2011 and 2013, 12 and 14 CRFs from Agrium Advanced Technologies, Everris, Florikan, and Chisso-Asahi Fertilizer were sealed in fiberglass mesh pouches (12.7 × 14 cm) that were buried 10 cm below the bed surface in a tomato crop grown using commercial production practices. A data logger collected soil temperature 10 cm below the bed surface. Pouches were collected and N content was measured eight times through two fall seasons. A nonlinear regression model was fit to the data to determine N release rate. During the 2011 and 2013 seasons, minimum, average, and maximum soil temperatures were 21.2 and 19.2, 25.7 and 23.5, and 32.2 and 27.7 °C, respectively. Seasonal total CRF N release was between 77.6% and 93.8% during 2011 and 58.3% and 94.3% in 2013. In 2011, PCU90 and in 2013, PCU90 and PCNPK120 had the highest seasonal total percentage N release (PNR) and FL180 had the lowest in both years. A nonlinear regression fit N release from CRF with R2 = 0.85 to 0.99 during 2011 and 0.49 to 0.99 during 2013. Nitrogen release from all CRFs was faster than the manufacturer’s stated release, probably as a result of high fall bed temperatures. A CRF or CRF mixture containing CRFs of 120- to 180-day release duration may be recommended, but the CRFs must release greater than 75% N during the season.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Yi Zhong ◽  
Renyi Gui ◽  
Zhuangzhuang Qian ◽  
Shunyao Zhuang

Slow release fertilizers are designed to enhance crop yield and minimizing the loss of nitrogen (N) to environment. However, N release in leaching and loss in ammonia emission from bag controlled release fertilizers have not been previously evaluated under the standardized conditions in soil. Accordingly, a laboratory study was conducted to evaluate the characteristics of N release from a bag controlled fertilizer with 1, 3, 5 and 7 rows of hole (B-1, B-3, B-5, B-7) and a kraft bag without hole (B-W). The results showed that the amount of N leaching of B-1, B-3, B-5, B-7 and B-W were significantly lower than urea fertilizer without bag (U). The maximum N release from the fertilizers followed the order: U (83.16%) > B-7 (54.61%) > B-5 (54.02%) > B-W (51.51%) > B-3 (48.87%) > B-1 (38.60%) during the experimentation. Compared with U treatment, ammonia volatilization losses were significantly decreased by B-1, B-3, B-5, B-7 and B-W treatments. Based on N release and loss, a suitable bag with holes should be considered in practice when using the bag controlled fertilizer to meet an environment good objective. The evaluation method merits further study combined with field experiment.


2014 ◽  
Vol 97 (3) ◽  
pp. 677-686 ◽  
Author(s):  
L Carolina Medina ◽  
Jerry B Sartain ◽  
Thomas A Obreza ◽  
Emily Leary ◽  
William L Hall ◽  
...  

Abstract Several technologies have been proposed to characterize the nutrient release patterns of enhanced-efficiency fertilizers (EEFs) during the last few decades. These technologies have been developed mainly by manufacturers and are product- specific based on the regulation and analysis of each EEF product. Despite previous efforts to characterize nutrient release of slow-release fertilizer (SRF) and controlled-release fertilizer (CRF) materials, no official method exists to assess their nutrient release patterns. However, the increased production and distribution of EEFs in specialty and nonspecialty markets requires an appropriate method to verify nutrient claims and material performance. Nonlinear regression was used to establish a correlation between the data generated from a 180-day soil incubation-column leaching procedure and 74 h accelerated lab extraction method, and to develop a model that can predict the 180-day nitrogen (N) release curve for a specific SRF and CRF product based on the data from the accelerated laboratory extraction method. Based on the R2 > 0.90 obtained for most materials, results indicated that the data generated from the 74 h accelerated lab extraction method could be used to predict N release from the selected materials during 180 days, including those fertilizers that require biological activity for N release.


2014 ◽  
Vol 931-932 ◽  
pp. 754-757
Author(s):  
Jittrera Buates ◽  
Petchporn Chawakitchareon ◽  
Rewadee Anuwattana

The objective of this research is to study the nutrient release behaviors on slow release fertilizer (Osmocote® N13:P13:K13, 3 month release formulation). The fertilizer was added into distilled water which adjusted pH of 6.5 and 7.5. The nutrient release behaviors were determined by collecting samples every 1 week and analyzed the nutrient contents in samples by scientific methods. As the result, for the total N release behavior, it may be considered that at lower pH condition tended to release more than that at higher one, for the P (shown by P2O5) and K (shown by K2O) release behaviors may be high at high pH condition.


2017 ◽  
Vol 27 (5) ◽  
pp. 639-643 ◽  
Author(s):  
Carey Grable ◽  
Joshua Knight ◽  
Dewayne L. Ingram

Although controlled-release fertilizers (CRFs) have been used in container-grown ornamental plants for decades, new coating technologies and blends of fertilizers coated for specific release rates are being employed to customize fertility for specific environments and crops. A study was conducted in the transitional climate of Kentucky to determine the nutrient release rates of three controlled-release blends of 8- to 9-month release and growth response of ‘Double Play Pink’ japanese spirea (Spiraea japonica) and ‘Smaragd’ arbovitae (Thuja occidentalis). Fertilizer 1 (16N–3.5P–8.3K–1.8Mg + trace elements) and Fertilizer 2 (18N–3.1P–8.3K–1.8Mg + trace elements) were prototype blends with different experimental polymer coatings. Fertilizer 3 was a blend of 18N–2.2P–6.6K–1.1Ca–1.4Mg–5.8S + trace elements, which combined 100% resin-coated prills with a polymer coating. Fertilizer 4 was commercially available 15N–3.9P–10K–1.3Mg–6S + trace elements. Fertilizer 3 released its nutrients earlier in the 12-week study than the other three fertilizers and resulted in lower shoot dry weight in both species. The new polymer coating technologies show promise for delivering a predicted release rate and are appropriate for container production of these woody shrubs in Kentucky. An interesting side note of this experiment was that leachate pH measurements across treatments averaged 1.2 units lower for arbovitae (6.3) than for japanese spirea (7.5) at week 12. It was assumed that chemical and/or biological reactions at the root/substrate interface in arbovitae moderated pH increases over the study.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 456D-456
Author(s):  
Andrew Ristvey ◽  
John Lea-Cox

Nutrient release patterns from several different controlled-release fertilizers (CRF) were studied during the overwintering period of a long-term nutrient uptake, leaching, and loss study of Azalea (Rhododendron) cv. `Karen' and Holly (Ilex cornuta) cv. `China Girl', under sprinkler and drip irrigation. In Maryland, diurnal winter temperatures can vary from ≈10 °C to above 15 °C. Most growers, therefore, cover frames with opaque plastic for cold protection from November through April. This is also the period when many growers apply CRFs on those plant species that take more than 1 year to produce. Few data are presently available on the release patterns of CRFs under variable temperature conditions in late winter/early spring. We hypothesized that substrate temperatures warmer than 15–16 °C will result in CRFs releasing nutrients at a time when root systems are inactive, with a major loss of nutrients with the first few irrigations in Spring. This 105-day study quantified nitrogen (N) and phosphorus release patterns from four brands of CRF (Osmocote, Nutricote, Scotts High N, and Polyon) with 270- and 360-day release rates, under these conditions. Each CRF was top dressed onto blocks of 18-month-old holly or azalea (n = 112) in 11.5-L (3-gal) containers, at a (low) rate of 6.1 g N per container. Ten randomly selected pots from each treatment were sampled every 15 days using two sequential leachings of distilled water, for a target leaching fraction of 25%. Leachates were recovered and analyzed for nitrate and orthophosphate concentrations. Ambient canopy temperatures were recorded continuously with remote temperature (HoBo) sensors from which degree days above 15–16 °C were calculated and correlated with CRF release patterns.


HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 669-673 ◽  
Author(s):  
Raul I. Cabrera

Seven nursery grade (8-9 month duration), polymer-coated, controlled-release fertilizers (CRF) were topdressed or incorporated into a 2 peat: 1 vermiculite: 1 sand (by volume) medium to yield the same amount of N per container. The pots (0.5 L) were uniformly irrigated with DI water every week to produce a target leaching fraction of 25%. Leachate N contents (ammonium plus nitrate), employed as indicators of N release, allowed for comparison of CRF performance as a function of temperature changes over a season. Two distinct N leaching (i.e., release) patterns were observed over the 180-day experimental period. The fertilizers Osmocote 18-6-12FS (Fast Start: OSM-FS), Prokote Plus 20-3-10 (PROK), Osmocote 24-4-8HN (High N: OSM-HN) and Polyon 25-4-12 (POLY) exhibited a N leaching pattern that closely followed changes in average daily ambient temperatures (Tavg) over the season. This relationship was curvilinear, with N leaching rates per pot (NLR) being highly responsive to Tavg changes between 20 and 25 °C. Temperatures above 25 °C produced an average maximum NLR of 1.27 mg·d-1 for these fertilizers. OSM-FS, PROK, and OSM-HN had the highest cumulative N losses over the experimental period. In contrast, the CRF group formed by Nutricote 18-6-8 (270: NUTR), Woodace 20-4-12 (WDC), and Osmocote 18-6-12 (OSM) showed a more stable N leaching pattern over a wider range of temperatures, with rates about 30% to 40% lower than those in the temperature-responsive CRF, and averaging a maximum NLR of 0.79 mg·d-1 for Tavg >25 °C. NUTR and WDC had the lowest cumulative N losses over the season. Soluble salt readings paralleled N leaching for each CRF, indicating similar leaching patterns for other nutrients. Incorporation produced significantly higher cumulative N losses than topdressing, but without effect on the actual N leaching pattern over the season. Regardless of the N formulation in the CRF, over 85% of the N recovered in the leachates was in the nitrate form.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 780-787 ◽  
Author(s):  
Donald J. Merhaut ◽  
Eugene K. Blythe ◽  
Julie P. Newman ◽  
Joseph P. Albano

Release characteristics of four types of controlled-release fertilizers (Osmocote, Nutricote, Polyon, and Multicote) were studied during a 47-week simulated plant production cycle. The 2.4-L containers containing a low-fertility, acid-based substrate were placed in an unheated greenhouse and subjected to environmental conditions often used for production of azaleas and camellias. Leachate from containers was collected weekly and monitored for pH, electrical conductivity, and concentrations of NH4+ N, NO3–N, total P and total K. Leachate concentrations of all nutrients were relatively high during the first 10 to 20 weeks of the study, and then gradually decreased during the remaining portion of the experiment. Differences were observed among fertilizer types, with Multicote often resulting in higher concentrations of N, P, and K in leachates compared to the leachates from the other fertilizer types during the first half of the study. Concentrations of NO3– and P from all fertilizer types were often above permissible levels as cited in the federal Clean Water Act.


Sign in / Sign up

Export Citation Format

Share Document