scholarly journals Greenhouse Evaluation of Pinewood Biochar Effects on Nutrient Status and Physiological Performance in Muscadine Grape (Vitis rotundifolia L.)

HortScience ◽  
2021 ◽  
Vol 56 (2) ◽  
pp. 277-285
Author(s):  
Yuru Chang ◽  
Lorenzo Rossi ◽  
Lincoln Zotarelli ◽  
Bin Gao ◽  
Ali Sarkhosh

Muscadine grape is a perennial crop that is highly responsive to local environmental factors and viticulture practices. Biochar is a promising soil amendment used to improve soil water and nutrient retention and promote plant growth. The present study aimed to assess the effects of different pinewood biochar rates on nutrient status and vegetative parameters of muscadine grape cv. Alachua grown on a nutrient-poor sandy soil, Ultisols (97.2% sand, 2.4% silt, and 0.4% clay), and mixed with five different rates (0%, 5%, 10%, 15%, and 20%) of biochar based on weight. Variations in soil moisture, temperature, and leaf greenness value [soil plant analysis development (SPAD) reading], net photosynthesis rate, and plant root and shoot dry weights were measured. In addition, the nutrient status of the soil, plant root, and shoot were determined. The results indicated that the higher rate of biochar could significantly (P < 0.05) improve soil moisture. Biochar can also decrease soil temperature, although there were no significant differences among treatments. Regarding the nutrient status, the biochar amendment increased the nutrient content of phosphorus (P), potassium (K), magnesium (Mg), and calcium (Ca), as well as the soil organic matter content and cation exchange capacity. Higher nutrient contents in soil lead to increased P and Mg in both aboveground and belowground muscadine plant tissues and decreased nitrogen (N), iron (Fe), and copper (Cu) in the root part. There were no significant differences observed in SPAD values, net photosynthesis, or dry weights of the root and shoot. This study demonstrates that the addition of biochar may enhance the soil water and nutrient status as well as improve plant P and Mg uptake; however, it showed no significant differences in the physiological performance of muscadine grape plants.

Weed Research ◽  
2019 ◽  
Vol 59 (6) ◽  
pp. 490-500
Author(s):  
W Kaczmarek‐Derda ◽  
M Helgheim ◽  
J Netland ◽  
H Riley ◽  
K Wærnhus ◽  
...  

Soil Research ◽  
1996 ◽  
Vol 34 (5) ◽  
pp. 679 ◽  
Author(s):  
Z Paydar ◽  
HP Cresswell

Different approaches were investigated for estimating the parameters in the Campbell soil water characteristic (SWC) equation from soil attributes such as particle size distribution (PSD), bulk density, and organic matter content. Predicted soil water characteristics were compared with measured values for soils of the wheatbelt of south-eastern Australia. A method of prediction is proposed incorporating an empirical relationship for estimating the slope of the SWC from the slope of the cumulative PSD. A power-law form is assumed for both the SWC and PSD functions. One measured SWC point is then used to locate and thus define the SWC curve. When SWC points predicted with this 'one-point' method were compared with measured values, the mean absolute value of the difference between each measured and predicted SWC point was 0.016 m3/m3 for the Geeves data and 0.027 m3/m3 for the Forrest data. Eight sets of predictive equations, previously developed using multiple regression analysis, were also evaluated. Whilst the equations predicted the slope of the SWC curves reasonably well, predictions of the air entry potential were poor. Although less accurate, the equations developed by multiple regression are less demanding in data requirement compared with alternative SWC prediction methods. The one-point method gave better predictions than the multiple regression approach but was less accurate than the 'two-point' method proposed in the first paper in this series. The one-point method should be considered where PSD data and 1 measured SWC point are available. In most other circumstances it will be more accurate and cost-effective to measure 2 SWC points to define the soil water characteristic function (the two-point method).* Part I, Aust. J. Soil Res., 1996, 34, 195–212.


2017 ◽  
Vol 10 (3) ◽  
pp. 262-270 ◽  
Author(s):  
Mélissa De Wilde ◽  
Elise Buisson ◽  
Nicole Yavercovski ◽  
Loïc Willm ◽  
Livia Bieder ◽  
...  

Successful invasive plant eradication is rare, because the methods used target the adult stage, not taking into account the development capacity of a large seedbank. Heating by microwave was considered, because it offers a means to quickly reach the temperature required for loss of seed viability and inhibition of germination. Previous results were not encouraging, because homogeneous and deep-wave penetration was not achieved, and the various parameters that can affect treatment effectiveness were incompletely addressed. This study aimed to determine, under experimental conditions, the best microwave treatment to inhibit invasive species seed germination in terms of power (2, 4, 6 kW) and duration (2, 4, 8 min) of treatments and depending on soil moisture (10%, 13%, 20%, 30%) and seed burial depth (2, 12 cm). Three invasive species were tested: Bohemian knotweed, giant goldenrod, and jimsonweed. The most effective treatments required relatively high power and duration (2kW8min, 4kW4min, 6kW2min, and 6kW4min; 4kW8min and 6kW8min were not tested for technical reasons), and their effectiveness diminished with increasing soil moisture with germination percentage between 0% and 2% for the lowest soil moisture, 0% and 56% for intermediate soil moisture, and 27% and 68% in control treatments. For the highest soil moisture, only 2kW8min and 4kW4min reduced germination percentage between 2% and 19%. Occasionally, germination of seeds located at the 12-cm depth was more strongly affected. Giant goldenrod seeds were the most sensitive, probably due to their small size. Results are promising and justify further experiments before developing a field microwave device to treat large volumes of soil infested by invasive seed efficiently and with reasonable energy requirements. Other types of soil, in terms of texture and organic matter content, should be tested in future experiments, because these factors influence soil water content and, consequently, microwave heating.


Author(s):  
John Bako Baon ◽  
Aris Wibawa

Double cropping of coffee with organic matter source plants is thought to increase organic matter content of soil. This study examined the effect of double cropping of coffee and organic matter source plants on soil organic matter content and yield of coffee plants. Arabica coffee trees in Andungsari Experimental Station (Bondowoso district), 1400 m asl. and climate type C; and Robusta coffee trees in Sumberasin Experimental Station (Malang district), 550 m asl. and climate type C, were used as experimental sites of this study which lasted for five years. Organic matter source plants consisted of some species that can be routinedly pruned and surface applied to coffee soil, and other creeping species that not being pruned, however the organic matter source derived from their fallen leaves. Application of farm manure and control (neither organic matter source plants nor farm yard manure) were used as comparison treatments. Results indicate that Ramayana (Cassia spectabilis) had vigorus growth resulting in greater biomass production compared to lamtoro (Leucaena leucocephala), mogania (Moghania macrophylla) and even kaliandra (Calyandra calothyrsus) which produced greater biomass among organic matter source plants grown in Arabica coffee farming. Double cropping of coffee with organic matter source plants did not affect soil organic matter content of Arabica and Robusta coffee farmings, though farm yard manure application increased soil organic matter content and soil bulk density, especially of Robusta coffee farm. Soil moisture content examined in dry season was not affected by double cropping. In contrary, Robusta coffee farm applied with farm yard manure had higher soil moisture content. At Arabica coffee farm, double cropping did not influence green coffee yield, on the other hand Ramayana reduced green coffee yield of Robusta coffee while farm yard manure increased the yield.Keywords : Coffeea arabica, Coffeea canephora, organic matter, soil moisture, double cropping, biomass producing plants.


2021 ◽  
Vol 30 (2) ◽  
pp. 141-149
Author(s):  
Tasnim Zannat ◽  
Farhana Firoz Meem ◽  
Rubaiat Sharmin Promi ◽  
Umme Qulsum Poppy ◽  
MK Rahman

Twelve soil and twelve leaf samples were collected from twelve litchi (Litchi chinensis Sonn.) orchards from different locations of Dinajpur to evaluate some physico-chemical properties and nutrient status of soil, and concentration of nutrients in litchi leaf. The pH of the soil varied from very strong acidic to medium acidic (4.8 - 5.7), organic matter content varied from 0.84 - 1.88%, EC varied from 302.4 - 310.2 μS/cm. The dominant soil textural class was clay loam. The average particle density was 2.49g/cm3. Total N, P, K and S in soils were 0.053 - 0.180%, 0.02 - 0.07%, 0.046 - 0.370 meq/100 g, and 0.015 - 0.028%, respectively. Available N, P, K, S, Zn, Fe, Mn and B in soils 30.40 - 57.8 mg/kg, 10.53 - 14.33 mg/kg, 0.03 - 0.32 meq/100 g, 20.03-34.80 mg/kg, 0.68-1.50 μg/g, 31.8 - 41.5 μg/g, 6.75 - 7.39 μg/g and 0.25-0.51 μg/g, respectively. The concentration of total N, P, K, S, Zn and Mn in the leaf were 1.74 - 2.20%, 0.11 - 0.188%, 0.104- 0.198%, 0.129 - 0.430%, 12 - 14 μg/g and 30 - 74 μg/g, respectively. The overall results indicated that the fertility status of the soils under the litchi plantation in the Dinajpur area are medium fertile. So, farmers could be advised to grow litchi plants after applying amendments to the soils to improve the physico-chemical properties in the Dinajpur area of Bangladesh. Dhaka Univ. J. Biol. Sci. 30(2): 141-149, 2021 (July)


2019 ◽  
Vol 34 (3) ◽  
pp. 362-370
Author(s):  
Jose V. Fernandez ◽  
D. Calvin Odero ◽  
Gregory E. MacDonald ◽  
Jason A. Ferrell ◽  
Brent A. Sellers ◽  
...  

AbstractDissipation of S-metolachlor, a soil-applied herbicide, on organic and mineral soils used for sugarcane production in Florida was evaluated using field studies in 2013 to 2016. S-metolachlor was applied PRE at 2,270 g ha−1 on organic and mineral soils with 75% and 1.6% organic matter, respectively. The rate of dissipation of S-metolachlor was rapid on mineral soils compared with organic soils. Dissipation of S-metolachlor on organic soils followed a negative linear trend resulting in half-lives (DT50) ranging from 50 to 126 d. S-metolachlor loss on organic soils was more rapid under high soil-moisture conditions than in corresponding low soil-moisture conditions. On mineral soils, dissipation of S-metolachlor followed an exponential decline. The DT50 of S-metolachlor on mineral soils ranged from 12 to 24 d. The short persistence of S-metolachlor on mineral soils was likely attributed to low organic matter content with limited adsorptive capability. The results indicate that organic matter content and soil moisture are important for persistence of S-metolachlor on organic and mineral soils used for sugarcane production in Florida.


2020 ◽  
Vol 17 (8) ◽  
pp. 545
Author(s):  
Jeonghyeon Ahn ◽  
Guiying Rao ◽  
Mustafa Mamun ◽  
Eric P. Vejerano

Environmental contextAssessing environmental and human health impacts of chemical spills relies on information about how chemicals move across multiple environments. We measured volatile contaminants in the air above soil saturated with water to provide estimates of air concentrations of selected chemicals released to soil from an oil refinery in Texas during Hurricane Harvey. Estimated concentrations were below recommended exposure limits, even in a worst-case scenario. AbstractThe emission of volatile organic compounds (VOCs) from soil into air is affected by soil moisture dynamics, soil temperature, solar irradiance and carbon availability. The high amount of water in soil can modify its properties, which changes how VOCs interact. We conducted a comprehensive measurement of the soil–air partition coefficient (KSA) of VOCs into water-saturated soil with both low and high water contents for polar, weakly polar and nonpolar VOCs into a mineral soil (S-clay) and soil containing a high amount of organic matter (S-om) under a water-saturated condition. Partitioning of non-polar substituted aromatics (1,2-dichlorobenzene and toluene) was sensitive to the organic matter content in water-saturated soil. 1,2-Dichlorobenzene and toluene had higher affinities to S-om than to S-clay at all investigated water contents because of their strong interaction with the organic matter in soil. KSA decreased with elevated water content only for non-polar substituted aromatic VOCs. Less hydrophobic VOCs (benzene and trichloroethylene) exhibited similar partitioning into both soils by sorbing onto the air-water interface and dissolving in soil water, while the organic matter did not affect partitioning. The weakly polar and polar VOCs (methyl tert-butyl ether and 1-butanol) showed similar partitioning into both soils by dissolving in soil water while sorption to the organic matter was significant only at high soil water contents. KSA of VOCs on soil with high organic matter content correlated strongly with psat and Koa, but not on mineral soil. Estimates of the air concentrations for a subset of VOCs released from one refinery during Hurricane Harvey in 2017 in Harris County, Texas were lower than the recommended exposure limits, even under a worst-case scenario.


1993 ◽  
Vol 8 (1) ◽  
pp. 27-33 ◽  
Author(s):  
J.L. Jordahl ◽  
D.L. Karlen

AbstractQuantitative studies are needed to separate the real and supposed benefits of alternative farming practices. Our objective was to learn how conventional and alternative practices on adjacent farms in central Iowa affected the water stability of soil aggregates. We collected samples of Clarion loam (fine-loamy, mixed, mesic Typic Hapludoll) from adjacent 16 ha fields in fall 1990 and spring 1991. Aggregate stability was determined by wet-sieving and by measuring turbidity of soil-water suspensions. The combined effects of alternative practices resulted in greater water stability of soil aggregates, higher soil organic matter content, and lower bulk density compared with conventional practices. The components of the alternative system that were mainly responsible for these differences were: rotations that included oat and hay crops; ridge-tillage; and additions of 45 Mg/ha of a mixture of animal manure and municipal sludge during the first 3 years of each 5 year rotation. The more favorable soil physical conditions, shown by increased water stability of soil aggregates, presumably will improve soil water regimes and reduce long-term soil erosion losses from the alternatively managed fields.


Plant Disease ◽  
1997 ◽  
Vol 81 (7) ◽  
pp. 743-748 ◽  
Author(s):  
M. W. van Iersel ◽  
B. Bugbee

Some benzimidazole fungicides are phytotoxic to bedding plants. Organic pesticides are bound to the organic matter fraction in the root zone and their availability to plants depends on the composition of the growing medium. Thus, pesticide phytotoxicity may be affected by the fraction of organic matter in the growing medium. We conducted two studies to examine the relationship between benzimidazole phytotoxicity and organic matter content of the growing medium. In the first study, plants were grown in diatomaceous earth, containing no organic matter, and drenched with different fungicides. Benlate DF reduced carbon accumulation (growth) of the plants by 32 and 73% at the 0.5× and 1× label rate, respectively. Carbon gain of plants drenched with either Derosal or 3336 WP was similar to that of the control plants. Both Benlate DF and 3336 WP significantly decreased the number of flowers on the plants. The second study quantified the phytotoxicity of Benlate DF in media containing different amounts of organic matter. The growth of Benlate DF-treated plants was strongly affected by the amount of peat. Net photosynthesis decreased and the severity of visual symptoms (chlorosis) of Benlate DF phytotoxicity increased in media containing less peat. Benlate DF phytotoxicity strongly depends on the amount of organic matter in the growing medium, probably due to sorption of the active ingredient of Benlate DF and/or its breakdown products to the organic matter.


Sign in / Sign up

Export Citation Format

Share Document