scholarly journals Weed Control in Field Nurseries

2003 ◽  
Vol 13 (1) ◽  
pp. 9-14 ◽  
Author(s):  
James E. Altland ◽  
Charles H. Gilliam ◽  
Glenn Wehtje

Herbicide use is an important component of weed management in field nursery crops. No single herbicide controls all weed species. Oxyfluorfen, simazine, and isoxaben are preemergence herbicides effective against broadleaf weeds. Oryzalin, pendimethalin, and prodiamine are effective in preemergence control of grasses and some small-seeded broadleaf weeds. Metolachlor is the only herbicide currently labeled for nursery crops that is effective in preemergence nutsedge (Cyperus) control. Fluazifop-butyl, sethoxydim, and clethodim are selective postemergence herbicides used for grass control. Glyphosate, paraquat, and glufosinate are nonselective postemergence herbicides used in directed spray applications for broad-spectrum weed control. Bentazon, halosulfuron, and imazaquin are effective postemergence nutsedge herbicides. These herbicides are discussed with respect to their chemical class, mode of action, labeled rates, and current research addressing their effectiveness in nursery crops.

HortScience ◽  
2015 ◽  
Vol 50 (6) ◽  
pp. 857-862 ◽  
Author(s):  
S. Christopher Marble ◽  
Andrew K. Koeser ◽  
Gitta Hasing

Use of preemergence and postemergence herbicides is the most effective and economical method of weed control in landscape planting beds. When used correctly, herbicides can provide satisfactory weed control, reduce labor costs, and cause little or no negative environmental impacts. Major factors in herbicide efficacy include choosing the correct herbicide for the weed species present, following proper calibration procedures, and applying herbicides at the correct timing. The objective of this review is to provide a comprehensive analysis of the research pertaining to herbicide use in landscape planting beds and present 1) the advantages and disadvantages of common chemical weed control strategies, 2) the most effective preemergence and postemergence herbicides in various landscape scenarios, 3) potential environmental concerns pertaining to improper application of herbicides, and 4) highlight knowledge gaps where additional research is needed or improvements could be made.


2007 ◽  
Vol 60 ◽  
pp. 183-188
Author(s):  
T.K. James ◽  
A. Rahman ◽  
M. Trolove

Field trials in Waikato Bay of Plenty and Manawatu investigated the efficacy of pre and postemergence herbicides for weed control in maize crops planted early mid or late season with prior cultivation or into a stale seedbed Achieving good control of broadleaf weeds was easier than for annual grass weeds Some weed species germinated over a long period from spring to summer months The residual activity of preemergence herbicides was not sufficient for seasonlong control of such weeds in the early and mid planted crops and a postemergence herbicide was essential to control them and to maintain grain yields When grass weeds were dominant the pre and postemergence combination still did not provide season long control in the early plantings In late planted crops weed control was also poor in the absence of a postemergence herbicide even though few weeds were present at the postemergence application time The weed seedbank was reduced where good weed control was achieved


Author(s):  
Eduardo Roncatto ◽  
Arthur Arrobas Martins Barroso ◽  
Juliana Calegarim ◽  
Felipe Ridolfo Lucio ◽  
Paulo Fernando Adami

Weed densities, species, costs of control, crop value and interference periods should be considered for weed management. With this regard, three experiments were carried out to evaluate weed control periods and weed density in a new soybean cultivar. In ths first trial, control efficacy was measured by visual phytotoxicity of four weed species I. hederifolia, E. heterophylla, Conyza spp. and R. brasiliensis using four different herbicides with two doses each: glyphosate (720 and 1,440 g ea ha-1), 2.4-D (670 and 1,340 g ea ha-1), glufosinate (400 and 600 g ea ha-1) and glyphosate + 2.4-D (410 + 390 and 820 + 780 g ea ha-1). Herbicides were sprayed in an entirely randomized 4x8+1 factorial scheme with six repetitions. In the second experiment, 2,4-D-resistant soybean growth was measured under increasing densities of the same weeds (21 plants m² vs 21, 42, 84, 168 and 336 plants m²). This experiment was conducted under entirely randomized design with 25 treatments with four repetitions. Critical level of damage and economic threshold level of each weed species in soybean were measured using non-linear regressions. In a third experiment, weed with soybean were submitted to increasing periods of control and coexistence (7, 14, 21, 28, 35, 49 and 70 days after soybean emergence, plus two control treatments). Glufosinate and glyphosate+2.4-D (820 + 780 g ea ha-1) showed greater weed control than glyphosate alone (720 g ea ha-1). The yield loss of 0.85, 2.12, 5.71 and 34.24% were found for each weed of E. heterophylla, I. hederifolia, R. brasiliensis and Conyza spp., coexisting with soybean. There was a soybean grain yield loss of 50% in the weedy treatment. Soybean weed management should occur between 18thand 48th days after its emergence. Economic threshold level on soybean yield suggested is below one plant of Conyza spp. and R. brasiliensis per m-². The use of glufosinate and glyphosate+2,4-D provides a greater flexibility of herbicide use for farmers


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 661e-661
Author(s):  
Kimberly B. Collins ◽  
Leslie A. Weston ◽  
Robert E. McNiel

The nursery industry currently has few options for effective season-long weed control, because few soil persistent herbicides are registered for use in ornamentals. An herbicide that provides season-long weed control with minimal injury to ornamentals would be extremely beneficial because it would enable the nurseryman to produce high-quality ornamentals with minimal weed interference Sulfentrazone (F6285), a newly developed herbicide from the FMC Corp., has shown promising results for weed control in field trials with ornamentals. Additional, trials are needed to further evaluate sulfentrazone in hopes that it may be registered for use in ornamentals in the future. Our objectives are 1) to increase long-term weed management in ornamentals, including woody species and groundcover; 2) to evaluate rate structures of sulfentrazone and combinations, including preemergence and postemergence herbicides; 3) to evaluate sulfentrazone selectivity in weed species and in ornamentals; 4) to evaluate sulfentrazone mode of action in weed species; and 5) to measure the soil activity of sulfentrazone. To achieve the first three objectives, a randomized complete block design will be used to evaluate 10 woody species and 17 herbicide combinations. The response variables will be weed control and phytotoxicity ratings taken at 0, 4, 8, and 12 weeks after treatment. The results of this study will be used in ongoing research trials in an attempt to register sulfentrazone (F6285) for use in ornamentals.


2020 ◽  
Vol 57 (3) ◽  
pp. 199-210
Author(s):  
Rajib Kundu ◽  
Mousumi Mondal ◽  
Sourav Garai ◽  
Ramyajit Mondal ◽  
Ratneswar Poddar

Field experiments were conducted at research farm of Bidhan Chandra Krishi Viswavidyalaya, Kalyani, West Bengal, India (22°97' N latitude and 88°44' E longitude, 9.75 m above mean sea level) under natural weed infestations in boro season rice (nursery bed as well as main field) during 2017-18 and 2018-19 to evaluate the herbicidal effects on weed floras, yield, non-target soil organisms to optimize the herbicide use for sustainable rice-production. Seven weed control treatments including three doses of bispyribac-sodium 10% SC (150,200, and 250 ml ha-1), two doses of fenoxaprop-p-ethyl 9.3% EC (500 and 625 ml ha-1), one weed free and weedy check were laid out in a randomized complete block design, replicated thrice. Among the tested herbicides, bispyribac-sodium with its highest dose (250 ml ha-1) resulted in maximum weed control efficiency, treatment efficiency index and crop resistance index irrespective of weed species and dates of observation in both nursery as well as main field. Similar treatment also revealed maximum grain yield (5.20 t ha-1), which was 38.38% higher than control, closely followed by Fenoxaprop-p-ethyl (625 ml ha-1) had high efficacy against grasses, sedge and broadleaf weed flora. Maximum net return (Rs. 48765 ha-1) and benefit cost ratio (1.72) were obtained from the treatment which received bispyribac-sodium @ 250 ml ha-1. Based on overall performance, the bispyribac-sodium (250 ml ha-1) may be considered as the best herbicide treatment for weed management in transplanted rice as well as nursery bed.


2021 ◽  
pp. 1-22
Author(s):  
Marcelo L. Moretti

Abstract Italian ryegrass has become a problematic weed in hazelnut orchards of Oregon because of the presence of herbicide-resistant populations. Resistant and multiple-resistant Italian ryegrass populations are now the predominant biotypes in Oregon; there is no information on which herbicides effectively control Italian ryegrass in hazelnut orchards. Six field studies were conducted in commercial orchards to evaluate Italian ryegrass control with POST herbicides. Treatments included flazasulfuron, glufosinate, glyphosate, paraquat, rimsulfuron, and sethoxydim applied alone or in selected mixtures during early spring when plants were in the vegetative stage. Treatment efficacy was dependent on the experimental site. The observed range of weed control 28 d after treatment was 13 to 76 % for glyphosate, 1 to 72% for paraquat, 58 to 88% for glufosinate, 16 to 97 % for flazasulfuron, 8 to 94% for rimsulfuron, and 25 to 91% for sethoxydim. Herbicides in mixtures improved control of Italian ryegrass compared to single active ingredients based on contrast analysis. Herbicides in mixture increased control by 27% compared to glyphosate, 18% to rimsulfuron, 15% to flazasulfuron, 19% to sethoxydim, and 12% compared to glufosinate when averaged across all sites, but mixture not always improved ground coverage of biomass reduction. This complex site-specific response highlights the importance of record-keeping for efficient herbicide use. Glufosinate is an effective option to manage Italian ryegrass. However, the glufosinate-resistant biotypes documented in Oregon may jeopardize this practice. Non-chemical weed control options are needed for sustainable weed management in hazelnuts.


2006 ◽  
Vol 86 (3) ◽  
pp. 875-885 ◽  
Author(s):  
J. R. Moyer ◽  
S. N. Acharya

Weeds, especially dandelion (Taraxacum officinale Weber in F.H. Wigg.), tend to infest a forage alfalfa (Medicago sativa L.) stand 2 to 4 yr after establishment. To develop better weed management systems, experiments were conducted at Lethbridge, Alberta, from 1995 to 2002 and Creston, British Columbia, from 1998 to 2001, which included the alfalfa cultivars Beaver (standard type) and AC Blue J (Flemish type) and annual applications of metribuzin and hexazinone. These herbicides are registered for weed control in irrigated alfalfa in Alberta and alfalfa grown for seed. In addition, two sulfonylurea herbicides, metsulfuron and sulfosulfuron, and glyphosate were included. All of the herbicides except glyphosate controlled or suppressed dandelion and mustard family weeds. Metsulfuron at 5 g a.i. ha-1 almost completely controlled dandelion at both locations. However, after metsulfuron application at Lethbridge, dandelion was replaced with an infestation of downy brome, which is unpalatable for cattle. None of the herbicides increased total forage (alfalfa + weed) yield, and in some instances herbicides reduced forage quality by causing a shift from a palatable to an unpalatable weed species. However, it was observed that AC Blue J consistently yielded more than Beaver, and weed biomass was consistently less in the higher-yielding cultivar. AC Blue J was developed primarily for the irrigated area in southern Alberta and for southern British Columbia. Therefore, additional experiments should be conducted to determine which alfalfa cultivars have the greatest ability to compete with weeds in other regions of western Canada. Key words: Alfalfa yield, dandelion, forage quality, weed control


2005 ◽  
Vol 23 (4) ◽  
pp. 204-211
Author(s):  
Donna C. Fare ◽  
Patricia Knight ◽  
Charles H. Gilliam ◽  
James Altland

Abstract Four experiments were conducted to investigate herbicides currently labeled for field and/or container production for use in pot-in-pot production. Southern magnolia (Magnolia grandiflora L.), red maple (Acer rubrum Spach. ‘Autumn Flame’ and ‘Franksred’), ornamental pear (Pyrus calleryana Decne. ‘Bradford’ and ‘Cleveland Select’), river birch (Betula nigra L.), green ash (Fraxinus pennsylvanica Marsh. and F. pennsylvanica Marsh.‘Marshall's Seedless’), and zelkova (Zelkova serrata Spach ‘Village Green’) were evaluated for herbicide tolerance. Barricade 65WG, Surflan 4AS, and Pendulum 60WDG, used alone or in combination with Princep and Gallery 75 DF, had no adverse effect on tree shoot growth or trunk caliper growth when applied as a directed band application. Weed control varied depending upon local site conditions, herbicide rate and weed species.


2006 ◽  
Vol 46 (9) ◽  
pp. 1177 ◽  
Author(s):  
J. A. Werth ◽  
C. Preston ◽  
G. N. Roberts ◽  
I. N. Taylor

Forty growers in 4 major cotton-growing regions in Australia were surveyed in 2003 to investigate how the adoption of glyphosate-tolerant cotton (Roundup Ready) had influenced herbicide use, weed management techniques, and whether changes to the weed spectrum could be identified. The 10 most common weeds reported on cotton fields were the same in glyphosate-tolerant and conventional fields in this survey. Herbicide use patterns were altered by the adoption of glyphosate-tolerant cotton with up to 6 times more glyphosate usage, but 21% fewer growers applying pre-emergence herbicides in glyphosate-tolerant fields. Other weed control practices such as the use of post-emergence herbicides, inter-row cultivation and hand hoeing were only reduced marginally. However, growers indicated that management practices are likely to change over time, especially with the introduction of enhanced glyphosate tolerance technology (Roundup Ready Flex), and anticipate a 32% decrease in the number of growers using alternative weed management practices. To date, management practices other than glyphosate use have not changed markedly in glyphosate-tolerant cotton indicating a conservative approach by growers adopting this technology and reflecting the narrow window of herbicide application. The range of weed control options still being employed in glyphosate-tolerant cotton would not increase the risk of glyphosate resistance development.


2011 ◽  
Vol 25 (2) ◽  
pp. 183-191 ◽  
Author(s):  
Jared R. Whitaker ◽  
Alan C. York ◽  
David L. Jordan ◽  
A. Stanley Culpepper

Glyphosate-resistant (GR) Palmer amaranth has become a serious pest in parts of the Cotton Belt. Some GR cotton cultivars also contain the WideStrike™ insect resistance trait, which confers tolerance to glufosinate. Use of glufosinate-based management systems in such cultivars could be an option for managing GR Palmer amaranth. The objective of this study was to evaluate crop tolerance and weed control with glyphosate-based and glufosinate-based systems in PHY 485 WRF cotton. The North Carolina field experiment compared glyphosate and glufosinate alone and in mixtures applied twice before four- to six-leaf cotton. Additional treatments included glyphosate and glufosinate mixed withS-metolachlor or pyrithiobac applied to one- to two-leaf cotton followed by glyphosate or glufosinate alone on four- to six-leaf cotton. All treatments received a residual lay-by application. Excellent weed control was observed from all treatments on most weed species. Glyphosate was more effective than glufosinate on glyphosate-susceptible (GS) Palmer amaranth and annual grasses, while glufosinate was more effective on GR Palmer amaranth. Annual grass and GS Palmer amaranth control by glyphosate plus glufosinate was often less than control by glyphosate alone but similar to or greater than control by glufosinate alone, while mixtures were more effective than either herbicide alone on GR Palmer amaranth. Glufosinate caused minor and transient injury to the crop, but no differences in cotton yield or fiber quality were noted. This research demonstrates glufosinate can be applied early in the season to PHY 485 WRF cotton without concern for significant adverse effects on the crop. Although glufosinate is often less effective than glyphosate on GS Palmer amaranth, GR Palmer amaranth can be controlled with well-timed applications of glufosinate. Use of glufosinate in cultivars with the WideStrike trait could fill a significant void in current weed management programs for GR Palmer amaranth in cotton.


Sign in / Sign up

Export Citation Format

Share Document