scholarly journals Optimising time of planting and herbicide aplication for control of problem weeds in maize

2007 ◽  
Vol 60 ◽  
pp. 183-188
Author(s):  
T.K. James ◽  
A. Rahman ◽  
M. Trolove

Field trials in Waikato Bay of Plenty and Manawatu investigated the efficacy of pre and postemergence herbicides for weed control in maize crops planted early mid or late season with prior cultivation or into a stale seedbed Achieving good control of broadleaf weeds was easier than for annual grass weeds Some weed species germinated over a long period from spring to summer months The residual activity of preemergence herbicides was not sufficient for seasonlong control of such weeds in the early and mid planted crops and a postemergence herbicide was essential to control them and to maintain grain yields When grass weeds were dominant the pre and postemergence combination still did not provide season long control in the early plantings In late planted crops weed control was also poor in the absence of a postemergence herbicide even though few weeds were present at the postemergence application time The weed seedbank was reduced where good weed control was achieved

1998 ◽  
Vol 12 (2) ◽  
pp. 215-222
Author(s):  
Robin R. Bellinder ◽  
Marija Arsenovic ◽  
Jonathan J. Kirkwyland ◽  
Russell W. Wallace

Following suggested guidelines developed by the Environmental Protection Agency (EPA), comparative snap bean herbicide performance field trials were conducted from 1993 to 1995 in New York. Data were obtained on crop injury, weed control, and weed biomass, and crop yield, quality, and losses during harvest. Trifluralin, EPTC, and pendimethalin applied preplant incorporated (PPI) and applications of metolachlor applied preemergence (PRE) provided less than adequate control of redroot pigweed, common lambsquarters, and hairy galinsoga. Cultivation improved weed control with PPI and PRE applications. Metolachlor + fomesafen PRE provided good control of hairy galinsoga, adequate redroot pigweed control, and marginal control of common lambsquarters. Fomesafen applied postemergence (POST), combinations of metolachlor applied PRE with fomesafen or bentazon applied POST, and fomesafen + bentazon applied POST adequately controlled the three weed species without cultivation. Herbicide treatments had little measurable impact on snap bean quality or losses during harvest. Information from product comparison trials may be useful in developing recommendations for growers but may prove less than adequate in providing data necessary for a thorough evaluation of the relative benefits of individual herbicides as intended by EPA guidelines. Difficulties were encountered in following the guidelines, and costs of conducting the product comparison trials for a single crop in one growing region exceeded $90,000 over 3 yr.


2003 ◽  
Vol 13 (1) ◽  
pp. 9-14 ◽  
Author(s):  
James E. Altland ◽  
Charles H. Gilliam ◽  
Glenn Wehtje

Herbicide use is an important component of weed management in field nursery crops. No single herbicide controls all weed species. Oxyfluorfen, simazine, and isoxaben are preemergence herbicides effective against broadleaf weeds. Oryzalin, pendimethalin, and prodiamine are effective in preemergence control of grasses and some small-seeded broadleaf weeds. Metolachlor is the only herbicide currently labeled for nursery crops that is effective in preemergence nutsedge (Cyperus) control. Fluazifop-butyl, sethoxydim, and clethodim are selective postemergence herbicides used for grass control. Glyphosate, paraquat, and glufosinate are nonselective postemergence herbicides used in directed spray applications for broad-spectrum weed control. Bentazon, halosulfuron, and imazaquin are effective postemergence nutsedge herbicides. These herbicides are discussed with respect to their chemical class, mode of action, labeled rates, and current research addressing their effectiveness in nursery crops.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 661e-661
Author(s):  
Kimberly B. Collins ◽  
Leslie A. Weston ◽  
Robert E. McNiel

The nursery industry currently has few options for effective season-long weed control, because few soil persistent herbicides are registered for use in ornamentals. An herbicide that provides season-long weed control with minimal injury to ornamentals would be extremely beneficial because it would enable the nurseryman to produce high-quality ornamentals with minimal weed interference Sulfentrazone (F6285), a newly developed herbicide from the FMC Corp., has shown promising results for weed control in field trials with ornamentals. Additional, trials are needed to further evaluate sulfentrazone in hopes that it may be registered for use in ornamentals in the future. Our objectives are 1) to increase long-term weed management in ornamentals, including woody species and groundcover; 2) to evaluate rate structures of sulfentrazone and combinations, including preemergence and postemergence herbicides; 3) to evaluate sulfentrazone selectivity in weed species and in ornamentals; 4) to evaluate sulfentrazone mode of action in weed species; and 5) to measure the soil activity of sulfentrazone. To achieve the first three objectives, a randomized complete block design will be used to evaluate 10 woody species and 17 herbicide combinations. The response variables will be weed control and phytotoxicity ratings taken at 0, 4, 8, and 12 weeks after treatment. The results of this study will be used in ongoing research trials in an attempt to register sulfentrazone (F6285) for use in ornamentals.


2002 ◽  
Vol 55 ◽  
pp. 228-234 ◽  
Author(s):  
J.J.C. Scheffer ◽  
J.A. Douglas ◽  
C.M. Triggs

Weed control was investigated in yacon (Smallanthus sonchifolius Asteraceae) a herbaceous perennial that produces edible tubers Eight preemergence (alachlor acetochlor simazine diuron pendamethalin dimethanamid methabenzthiazuron and metribuzin) and two postemergence (linuron and methabenzthiazuron) herbicides were evaluated in field trials at Pukekohe All preemergence herbicides except metribuzin were tolerated by yacon but the best weed control was achieved with acetochlor metribuzin and dimethanamid Weeds in the untreated control caused a 62 reduction (Plt;005) in root weight relative to acetochlor alachlor metribuzin and dimethanamid The postemergence herbicides were both phytotoxic to yacon top growth but the plants subsequently recovered and plant crown production at harvest was not reduced relative to the control (P>005)


2005 ◽  
Vol 23 (4) ◽  
pp. 204-211
Author(s):  
Donna C. Fare ◽  
Patricia Knight ◽  
Charles H. Gilliam ◽  
James Altland

Abstract Four experiments were conducted to investigate herbicides currently labeled for field and/or container production for use in pot-in-pot production. Southern magnolia (Magnolia grandiflora L.), red maple (Acer rubrum Spach. ‘Autumn Flame’ and ‘Franksred’), ornamental pear (Pyrus calleryana Decne. ‘Bradford’ and ‘Cleveland Select’), river birch (Betula nigra L.), green ash (Fraxinus pennsylvanica Marsh. and F. pennsylvanica Marsh.‘Marshall's Seedless’), and zelkova (Zelkova serrata Spach ‘Village Green’) were evaluated for herbicide tolerance. Barricade 65WG, Surflan 4AS, and Pendulum 60WDG, used alone or in combination with Princep and Gallery 75 DF, had no adverse effect on tree shoot growth or trunk caliper growth when applied as a directed band application. Weed control varied depending upon local site conditions, herbicide rate and weed species.


Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 531-539 ◽  
Author(s):  
Zubeyde Filiz Arslan ◽  
Martin M. Williams ◽  
Roger Becker ◽  
Vincent A. Fritz ◽  
R. Ed Peachey ◽  
...  

Atrazine has been the most widely used herbicide in North American processing sweet corn for decades; however, increased restrictions in recent years have reduced or eliminated atrazine use in certain production areas. The objective of this study was to identify the best stakeholder-derived weed management alternatives to atrazine in processing sweet corn. In field trials throughout the major production areas of processing sweet corn, including three states over 4 yr, 12 atrazine-free weed management treatments were compared to three standard atrazine-containing treatments and a weed-free check. Treatments varied with respect to herbicide mode of action, herbicide application timing, and interrow cultivation. All treatments included a PRE application of dimethenamid. No single weed species occurred across all sites; however, weeds observed in two or more sites included common lambsquarters, giant ragweed, morningglory species, velvetleaf, and wild-proso millet. Standard treatments containing both atrazine and mesotrione POST provided the most efficacious weed control among treatments and resulted in crop yields comparable to the weed-free check, thus demonstrating the value of atrazine in sweet corn production systems. Timely interrow cultivation in atrazine-free treatments did not consistently improve weed control. Only two atrazine-free treatments consistently resulted in weed control and crop yield comparable to standard treatments with atrazine POST: treatments with tembotrione POST either with or without interrow cultivation. Additional atrazine-free treatments with topramezone applied POST worked well in Oregon where small-seeded weed species were prevalent. This work demonstrates that certain atrazine-free weed management systems, based on input from the sweet corn growers and processors who would adopt this technology, are comparable in performance to standard atrazine-containing weed management systems.


Weed Science ◽  
1990 ◽  
Vol 38 (3) ◽  
pp. 267-272 ◽  
Author(s):  
Steven G. Russell ◽  
Thomas J. Monaco ◽  
Jerome B. Weber

Field trials were conducted in 1986 and 1987 to determine the effects of moisture on herbicidal activity of cinmethylin applied preemergence at 0.0, 0.3, 0.6, and 0.9 kg ai ha to both dry and moist sandy loam soil. Herbicide application was followed by varying amounts of irrigation. Weed species included velvetleaf, prickly sida, green foxtail, and barnyardgrass. When cinmethylin was applied to a moist soil or when 2.5 cm of irrigation was applied 5 days after cinmethylin application to a dry soil, overall weed control was reduced. Optimum weed control resulted from cinmethylin application to dry soil followed either by a 2.5-cm irrigation within 8 h or a 7.6-cm irrigation within 36 h.


2018 ◽  
Vol 32 (6) ◽  
pp. 707-713 ◽  
Author(s):  
Brendan A. Metzger ◽  
Nader Soltani ◽  
Alan J. Raeder ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractTolpyralate is a new Group 27 pyrazolone herbicide that inhibits the 4-hydroxyphenyl-pyruvate dioxygenase enzyme. In a study of the biologically effective dose of tolpyralate from 2015 to 2017 in Ontario, Canada, tolpyralate exhibited efficacy on a broader range of species when co-applied with atrazine; however, there is limited published information on the efficacy of tolpyralate and tolpyralate+atrazine relative to mesotrione and topramezone, applied POST with atrazine at label rates, for control of annual grass and broadleaf weeds. In this study, tolpyralate applied alone at 30 g ai ha−1 provided >90% control of common lambsquarters, velvetleaf, common ragweed, Powell amaranth/redroot pigweed, and green foxtail at 8 weeks after application (WAA). Addition of atrazine was required to achieve >90% control of wild mustard, ladysthumb, and barnyardgrass at 8 WAA. Tolpyralate+atrazine (30+1,000 g ai ha−1) and topramezone+atrazine (12.5+500 g ai ha−1) provided similar control at 8 WAA of the eight weed species in this study; however, tolpyralate+atrazine provided >90% control of green foxtail by 1 WAA. Tolpyralate+atrazine provided 18, 68, and 67 percentage points better control of common ragweed, green foxtail, and barnyardgrass, respectively, than mesotrione+atrazine (100+280 g ai ha−1) at 8 WAA. Overall, tolpyralate+atrazine applied POST provided equivalent or improved control of annual grass and broadleaf weeds compared with mesotrione+atrazine and topramezone+atrazine.


1994 ◽  
Vol 8 (1) ◽  
pp. 23-27 ◽  
Author(s):  
David L. Jordan ◽  
John W. Wilcut ◽  
Leslie D. Fortner

Field experiments conducted in 1988 and 1989 evaluated clomazone alone and in a systems approach for weed control in peanut. Clomazone PPI at 0.8 kg ai/ha controlled common ragweed, prickly sida, spurred anoda, and tropic croton better than ethalfluralin and/or metolachlor applied PPI. POST application of acifluorfen plus bentazon was not needed to control these weeds when clomazone was used. Acifluorfen plus bentazon improved control of these weeds when clomazone was not used and generally were necessary to obtain peanut yields regardless of the soil-applied herbicides. Alachlor PRE did not improve clomazone control of any weed species evaluated. Fall panicum and large crabgrass control was similar with clomazone or clomazone plus ethalfluralin.


2017 ◽  
Vol 44 (2) ◽  
pp. 93-99 ◽  
Author(s):  
O.W. Carter ◽  
E.P. Prostko ◽  
J.W. Davis

ABSTRACT The increase in herbicide-resistant weeds over the past decade has led to the introduction of crops that are resistant to auxin herbicides. Strict application procedures are required for the use of auxin herbicides in auxin-resistant crops to minimize off-target movement. One requirement for application is the use of nozzles that will minimize drift by producing coarse droplets. Generally, an increase in droplet size can lead to a reduction in coverage and efficacy depending upon the herbicide and weed species. In studies conducted in 2015 and 2016, two of the potential required auxin nozzle types [(AIXR11002 (coarse) and TTI11002 (ultra-coarse)] were compared to a conventional flat-fan drift guard nozzles [DG11002 (medium)] for weed control in peanut herbicide systems. Nozzle type did not influence annual grass or Palmer amaranth control in non-crop tests. Results from in-crop tests indicated that annual grass control was 5% to 6% lower when herbicides were applied with the TTI nozzle when compared to the AIXR or DG nozzles. However, Palmer amaranth control and peanut yield was not influenced by coarse-droplet nozzles. Peanut growers using the coarse-droplet nozzles need to be aware of potential reduced grass control.


Sign in / Sign up

Export Citation Format

Share Document