scholarly journals Remote Sensing of Shaded Area in Vineyards

2005 ◽  
Vol 15 (4) ◽  
pp. 859-863 ◽  
Author(s):  
Lee Johnson ◽  
Thibaut Scholasch

Airborne multispectral image data were compared with intercepted photosynthetic photon flux (PPF) in commercial winegrape (Vitis vinifera) vineyards of Napa Valley, Calif. An empirically based calibration was applied to transform raw image pixel values to surface reflectance. Reflectance data from the red and near-infrared spectral regions were combined into a normalized difference vegetation index. Strong linear response was observed between the vegetation index and PPF interception ranging from 0.15 to 0.50. Study results suggest the possibility of using optical remote sensing to monitor and map vineyard shaded area, thus providing spatially explicit input to water budget models that invoke evapotranspiration crop coefficient based calculations.

2018 ◽  
Vol 36 (3) ◽  
pp. 266-273
Author(s):  
Euseppe Ortiz ◽  
Enrique A. Torres

The use of remote sensing to determine water needs has been successfully applied by several authors to different crops, maintaining, as an important basis, the relationship between the normalized difference vegetation index (NDVI) and biophysical variables, such as the fraction of coverage (fc) and the basal crop coefficient (Kcb). Therefore, this study quantified the water needs of two varieties of coriander (UNAPAL Laurena CL and UNAPAL Precoso CP) based on the response of fc and Kcb, using remote sensors and a water balance according to the FAO-56 methodology. A Campbell Scientific meteorological station, a commercial digital camera and a portable spectro radiometer were used to obtain information on the environmental conditions and the crop. By means of remote sensing associated with a water balance, it was found that the water demand was 156 mm for CL and 151 mm for CP until the foliage harvest (41 d after sowing); additionally, the initial Kcb was 0.14, the mean Kcb was 1.16 (approximately) and the final Kcb was 0.71 (approximately).


Author(s):  
H. R. Naveen ◽  
B. Balaji Naik ◽  
G. Sreenivas ◽  
Ajay Kumar ◽  
J. Adinarayana ◽  
...  

Aims/Objectives: Is to examine the use of spectral reflectance characteristics and explore the effectiveness of spectral indices under water and nitrogen stress environment. Study Design: Split-plot. Place and Duration of Study: Agro Climate Research Center, A.R.I., P.J.T.S. Agricultural University, Rajendranagar, Hyderabad, India in 2018-19. Methodology: Fixed amount of 5 cm depth of water was applied to each plot when the ratio of irrigation water and cumulative pan evaporation (IW/CPE) arrives at pre-determined levels of 0.6, 0.8 & 1.2 as main-plot and 3 nitrogen levels viz. 100, 200 & 300 kg N ha-1 as a subplot to create water and nitrogen stress environment. Spectral reflectance from each treatment was measured using Spectroradiometer and analyzed using statistical software package SPSS 17, SAS and trial version of UNSCRABLER. Results: At tasseling and dough stages, the reflectance pattern of maize was found to be higher in visible light spectrum of 400 to700 nm whereas lower in near-infrared region (700 to 900) in both underwater (IW/CPE ratio of 0.6) and nitrogen stress (100 kg N ha-1) environment as compared to moderate and no stress irrigation (IW/CPE ratio of 0.8 & 1.2) and nitrogen (200 and 300 kg N ha-1) treatments. The discriminant analysis of NDVI, GNDVI, WBI and SR indicated that 72.2% and 66.7% of the original grouped cases and 55.6% and 38.9% of the cross-validated grouped cases under irrigation and nitrogen levels, respectively were correctly classified. Conclusion: Hyperspectral remote sensing can be used as a tool to detect and quantify the water and nitrogen stress in maize non-destructively. Spectral vegetation indices viz. Normalized Difference Vegetation Index (NDVI) and Green Normalized Difference Vegetation Index (GNDVI) were found effective to distinguish water and nitrogen stress severity in maize.


2021 ◽  
Vol 936 (1) ◽  
pp. 012038
Author(s):  
Benedict ◽  
Lalu Muhamad Jaelani

Abstract Java is Indonesia’s and the world’s most populous island. The increase in population on the island of Java reduces the area of forest and other vegetation covers. Landslides, floods, and other natural disasters are caused by reduced vegetation cover. Furthermore, it has the potential to lead to the extinction of flora and fauna. The Normalized Difference Vegetation Index (NDVI) can be used to monitor the vegetation cover. This study analyzes the NDVI changes value from 2005 to 2020 using Terra and Aqua MODIS image data processed using Google Earth Engine. Processing was carried out in some stages: down-setting, performing NDVI processing, calculating monthly average NDVI, calculating annual average NDVI, and analyzing. From the study results, the NDVI value of Terra and Aqua MODIS data has a solid but imperfect correlation coefficient due to differences in orbital time which causes differences in solar zenith angle, sensor viewing angle, and azimuth angle. Then from this study, it was found that overall, changes in vegetation density cover on the island of Java decreased, which was indicated by the NDVI decline rate of -0.00047/year. The most significant decrease in NDVI value occurred in the period 2015–2016, covering an area of 13994.630 km2, and the most significant increase in NDVI occurred in the period 2010–2011, covering an area of 2256.101 km2.


Silva Fennica ◽  
2019 ◽  
Vol 53 (2) ◽  
Author(s):  
Petri Forsström ◽  
Jouni Peltoniemi ◽  
Miina Rautiainen

Accurate mapping of the spatial distribution of understory species from spectral images requires ground reference data which represent the prevailing phenological stage at the time of image acquisition. We measured the spectral bidirectional reflectance factors (BRFs, 350–2500 nm) at varying view angles for lingonberry ( L.) and blueberry ( L.) throughout the growing season of 2017 using Finnish Geospatial Research Institute’s FIGIFIGO field goniometer. Additionally, we measured spectra of leaves and berries of both species, and flowers of lingonberry. Both lingonberry and blueberry showed seasonality in visible and near-infrared spectral regions which was linked to occurrences of leaf growth, flowering, berrying, and leaf senescence. The seasonality of spectra differed between species due to different phenologies (evergreen vs. deciduous). Vegetation indices, normalized difference vegetation index (NDVI), moisture stress index (MSI), plant senescence reflectance index (PSRI), and red-edge inflection point (REIP2), showed characteristic seasonal trends. NDVI and PSRI were sensitive to the presence of flowers and berries of lingonberry, while with blueberry the effects were less evident. Off-nadir observations supported differentiating the dwarf shrub species from each other but showed little improvement for detection of flowers and berries. Lingonberry and blueberry can be identified by their spectral signatures if ground reference data are available over the entire growing season. The spectral data measured in this study are reposited in the publicly open SPECCHIO Spectral Information System.Vaccinium vitis-idaeaVaccinium myrtillus


2021 ◽  
Vol 87 (12) ◽  
pp. 891-899
Author(s):  
Freda Elikem Dorbu ◽  
Leila Hashemi-Beni ◽  
Ali Karimoddini ◽  
Abolghasem Shahbazi

The introduction of unmanned-aerial-vehicle remote sensing for collecting high-spatial- and temporal-resolution imagery to derive crop-growth indicators and analyze and present timely results could potentially improve the management of agricultural businesses and enable farmers to apply appropriate solution, leading to a better food-security framework. This study aimed to analyze crop-growth indicators such as the normalized difference vegetation index (NDVI), crop height, and vegetated surface roughness to determine the growth of corn crops from planting to harvest. Digital elevation models and orthophotos generated from the data captured using multispectral, red/green/blue, and near-infrared sensors mounted on an unmanned aerial vehicle were processed and analyzed to calculate the various crop-growth indicators. The results suggest that remote sensing-based growth indicators can effectively determine crop growth over time, and that there are similarities and correlations between the indicators.


Geosciences ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 164
Author(s):  
Valentine Piroton ◽  
Romy Schlögel ◽  
Christian Barbier ◽  
Hans-Balder Havenith

Central Asian mountain regions are prone to multiple types of natural hazards, often causing damage due to the impact of mass movements. In spring 2017, Kyrgyzstan suffered significant losses from a massive landslide activation event, during which also two of the largest deep-seated mass movements of the former mining area of Mailuu-Suu—the Koytash and Tektonik landslides—were reactivated. This study consists of the use of optical and radar satellite data to highlight deformation zones and identify displacements prior to the collapse of Koytash and to the more superficial deformation on Tektonik. Especially for the first one, the comparison of Digital Elevation Models of 2011 and 2017 (respectively, satellite and unmanned aerial vehicle (UAV) imagery-based) highlights areas of depletion and accumulation, in the scarp and near the toe, respectively. The Differential Synthetic Aperture Radar Interferometry analysis identified slow displacements during the months preceding the reactivation in April 2017, indicating the long-term sliding activity of Koytash and Tektonik. This was confirmed by the computation of deformation time series, showing a positive velocity anomaly on the upper part of both landslides. Furthermore, the analysis of the Normalized Difference Vegetation Index revealed land cover changes associated with the sliding process between June 2016 and October 2017. In addition, in situ data from a local meteorological station highlighted the important contribution of precipitation as a trigger of the collapse. The multidirectional approach used in this study demonstrated the efficiency of applying multiple remote sensing techniques, combined with a meteorological analysis, to identify triggering factors and monitor the activity of landslides.


Author(s):  
M. Ustuner ◽  
F. B. Sanli ◽  
S. Abdikan ◽  
M. T. Esetlili ◽  
Y. Kurucu

Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46 % was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands.


2019 ◽  
Vol 12 (2) ◽  
pp. 26-40
Author(s):  
Sheriza Mohd Razali ◽  
Ahmad Ainuddin Nuruddin ◽  
Marryanna Lion

Abstract Mangroves critically require conservation activity due to human encroachment and environmental unsustainability. The forests must be conserving through monitoring activities with an application of remote sensing satellites. Recent high-resolution multispectral satellite was used to produce Normalized Difference Vegetation Index (NDVI) and Tasselled Cap transformation (TC) indices mapping for the area. Satellite Pour l’Observation de la Terre (SPOT) SPOT-6 was employed for ground truthing. The area was only a part of mangrove forest area of Tanjung Piai which estimated about 106 ha. Although, the relationship between the spectral indices and dendrometry parameters was weak, we found a very significant between NDVI (mean) and stem density (y=10.529x + 12.773) with R2=0.1579. The sites with NDVI calculated varied from 0.10 to 0.26 (P1 and P2), under the environmental stress due to sand deposition found was regard as unhealthy vegetation areas. Whereas, site P5 with NDVI (mean) 0.67 is due to far distance from risk wave’s zone, therefore having young/growing trees with large lush green cover was regard as healthy vegetation area. High greenness indicated in TC means, the bands respond to a combination of high absorption of chlorophyll in the visible bands and the high reflectance of leaf structures in the near-infrared band, which is characteristic of healthy green vegetation. Overall, our study showed our tested WV-2 image combined with ground data provided valuable information of mangrove health assessment for Tanjung Piai, Johor, Malay Peninsula.


2015 ◽  
Vol 75 (1) ◽  
Author(s):  
Hashim Ali Hasab ◽  
Anuar Ahmad ◽  
Maged Marghany ◽  
Abdul Razzak Ziboon

Mesopotamia marshlands constitute the largest wetland ecosystem in the Middle East and western Eurasia. These marshlands are located at the confluence of Tigris and Euphrates rivers in southern Iraq. Al-Huwaizah marsh is the biggest marsh in southern Iraq covered by an area (2400 Km2-3000 Km2) and depth (1.5 m-5 m). The construction dams by Turkey and Syrian for water storage as well as hydroelectric power generation along Tigris and Euphrates rivers, led to reduce and deteriorate water quality in Iraq's marshes. Salinity has become one of the major problems affecting crop production and food security in central and southern Iraq. The objective of this study to develop a new algorithm to retrieve salinity and normalized difference vegetation index (NDVI) from optical remote sensing Landsat-8 (OLI/TIRS) data based on differential equations algorithms. The mathematical algorithms are linear, power and exponential algorithm. The integration between remote sensing techniques and geographic information system (GIS) to map hydrodynamic and the spatial variation of salinity distribution. There is a pressing need to quantify and map the spatial extent and distribution of the salinity in Al-Huwaizah marsh of southern Iraq during March-2013. The findings of this study proved that the integration between Landsat-8 data and GIS with salinity algorithms could provide a powerful tool for retrieving salinity in marshes zone.


2016 ◽  
Vol 46 (9) ◽  
pp. 1683-1688 ◽  
Author(s):  
Thálita Carrijo de Oliveira ◽  
Elizabeth Ferreira ◽  
Antônio Augusto Aguilar Dantas

ABSTRACT: Vegetation indices obtained by remote sensing products have various applications in agriculture. An important application of the Normalized Difference Vegetation Index (NDVI) is obtaining the crop coefficient (Kc). The aims of this study were to analyze NDVI temporal profiles and to obtain Kc from the NDVI vegetation index product MOD13Q1. The analysis is based on the phenological stages of irrigated soybean crops in the municipality of Planura/MG during the 2010/2011 growing season. Areas planted with irrigated soybean were identified through fieldwork. Temporal series of the MOD13Q1 products were used to analyze NDVI, allowing the extraction of NDVI values for all points in the period studied. The NDVI temporal profiles showed a similar pattern to each other and corresponded to the crop cycle. The KcNDVI values for the MOD13Q1 products were well correlated to the FAO Kc values (r2=0.72). Thus, NDVI can be used as an alternative for obtaining crop coefficient (Kc).


Sign in / Sign up

Export Citation Format

Share Document