scholarly journals Hyperspectral Remote Sensing for Determining Water and Nitrogen Stress in Maize during Rabi Season

Author(s):  
H. R. Naveen ◽  
B. Balaji Naik ◽  
G. Sreenivas ◽  
Ajay Kumar ◽  
J. Adinarayana ◽  
...  

Aims/Objectives: Is to examine the use of spectral reflectance characteristics and explore the effectiveness of spectral indices under water and nitrogen stress environment. Study Design: Split-plot. Place and Duration of Study: Agro Climate Research Center, A.R.I., P.J.T.S. Agricultural University, Rajendranagar, Hyderabad, India in 2018-19. Methodology: Fixed amount of 5 cm depth of water was applied to each plot when the ratio of irrigation water and cumulative pan evaporation (IW/CPE) arrives at pre-determined levels of 0.6, 0.8 & 1.2 as main-plot and 3 nitrogen levels viz. 100, 200 & 300 kg N ha-1 as a subplot to create water and nitrogen stress environment. Spectral reflectance from each treatment was measured using Spectroradiometer and analyzed using statistical software package SPSS 17, SAS and trial version of UNSCRABLER. Results: At tasseling and dough stages, the reflectance pattern of maize was found to be higher in visible light spectrum of 400 to700 nm whereas lower in near-infrared region (700 to 900) in both underwater (IW/CPE ratio of 0.6) and nitrogen stress (100 kg N ha-1) environment as compared to moderate and no stress irrigation (IW/CPE ratio of 0.8 & 1.2) and nitrogen (200 and 300 kg N ha-1) treatments. The discriminant analysis of NDVI, GNDVI, WBI and SR indicated that 72.2% and 66.7% of the original grouped cases and 55.6% and 38.9% of the cross-validated grouped cases under irrigation and nitrogen levels, respectively were correctly classified. Conclusion: Hyperspectral remote sensing can be used as a tool to detect and quantify the water and nitrogen stress in maize non-destructively. Spectral vegetation indices viz. Normalized Difference Vegetation Index (NDVI) and Green Normalized Difference Vegetation Index (GNDVI) were found effective to distinguish water and nitrogen stress severity in maize.

Author(s):  
Eniel Rodríguez-Machado ◽  
Osmany Aday-Díaz ◽  
Luis Hernández-Santana ◽  
Jorge Luís Soca-Muñoz ◽  
Rubén Orozco-Morales

Precision agriculture, making use of the spatial and temporal variability of cultivable land, allows farmers to refine fertilization, control field irrigation, estimate planting productivity, and detect pests and disease in crops. To that end, this paper identifies the spectral reflectance signature of brown rust (Puccinia melanocephala) and orange rust (Puccinia kuehnii), which contaminate sugar cane leaves (Saccharum spp.). By means of spectrometry, the mean values and standard deviations of the spectral reflectance signature are obtained for five levels of contamination of the leaves in each type of rust, observing the greatest differences between healthy and diseased leaves in the red (R) and near infrared (NIR) bands. With the results obtained, a multispectral camera was used to obtain images of the leaves and calculate the Normalized Difference Vegetation Index (NDVI). The results identified the presence of both plagues by differentiating healthy from contaminated leaves through the index value with an average difference of 11.9% for brown rust and 9.9% for orange rust.


2018 ◽  
Vol 8 (2) ◽  
pp. 249-259 ◽  
Author(s):  
Miloš Barták ◽  
Kumud Bandhu Mishra ◽  
Michaela Marečková

Lichens, in polar and alpine regions, pass through repetitive dehydration and rehydration events over the years. The harsh environmental conditions affect the plasticity of lichen’s functional and structural features for their survival, in a species-specific way, and, thus, their optical and spectral characteristics. For an understanding on how dehydration affects lichens spectral reflectance, we measured visible (VIS) and near infrared (NIR) reflectance spectra of Dermatocarpon polyphyllizum, a foliose lichen species, from James Ross Island (Antarctica), during gradual dehydration from fully wet (relative water content (RWC) = 100%) to dry state (RWC = 0%), under laboratory conditions, and compared several derived reflectance indices (RIs) to RWC. We found a curvilinear relationship between RWC and range of RIs: water index (WI), photochemical reflectance index (PRI), normalized difference vegetation index (NDVI), modified chlorophyll absorption in reflectance indices (MCARI and MCARI1), simple ratio pigment index (SRPI), normalized pigment chlorophyll index (NPCI), and a new NIR shoulder region spectral ratio index (NSRI). The index NDVI was initially increased with maxima around 70% RWC and it steadily declined with further desiccation, whereas PRI in-creased with desiccation and steeply falls when RWC was below 10%. The curvilinear relationship, for RIs versus RWC, was best fitted by polynomial regressions of second or third degree, and it was found that RWC showed very high correlation with WI (R2 = 0.94) that is followed by MCARI (R2 = 0.87), NDVI (R2 = 0.83), and MCARI (R2 = 0.81). The index NSRI, proposed for accessing structural deterioration, was almost invariable during dehydration with the least value of the coefficient of determination (R2 = 0.28). This may mean that lichen, Dermatocarpon polyphyllizum, activates protection mechanisms initially in response to the progression of dehydration; however, severe dehydration causes deactivation of photosynthesis and associated pigments without much affecting its structure.


2021 ◽  
Vol 87 (12) ◽  
pp. 891-899
Author(s):  
Freda Elikem Dorbu ◽  
Leila Hashemi-Beni ◽  
Ali Karimoddini ◽  
Abolghasem Shahbazi

The introduction of unmanned-aerial-vehicle remote sensing for collecting high-spatial- and temporal-resolution imagery to derive crop-growth indicators and analyze and present timely results could potentially improve the management of agricultural businesses and enable farmers to apply appropriate solution, leading to a better food-security framework. This study aimed to analyze crop-growth indicators such as the normalized difference vegetation index (NDVI), crop height, and vegetated surface roughness to determine the growth of corn crops from planting to harvest. Digital elevation models and orthophotos generated from the data captured using multispectral, red/green/blue, and near-infrared sensors mounted on an unmanned aerial vehicle were processed and analyzed to calculate the various crop-growth indicators. The results suggest that remote sensing-based growth indicators can effectively determine crop growth over time, and that there are similarities and correlations between the indicators.


Author(s):  
M. Ustuner ◽  
F. B. Sanli ◽  
S. Abdikan ◽  
M. T. Esetlili ◽  
Y. Kurucu

Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46 % was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands.


2005 ◽  
Vol 15 (4) ◽  
pp. 859-863 ◽  
Author(s):  
Lee Johnson ◽  
Thibaut Scholasch

Airborne multispectral image data were compared with intercepted photosynthetic photon flux (PPF) in commercial winegrape (Vitis vinifera) vineyards of Napa Valley, Calif. An empirically based calibration was applied to transform raw image pixel values to surface reflectance. Reflectance data from the red and near-infrared spectral regions were combined into a normalized difference vegetation index. Strong linear response was observed between the vegetation index and PPF interception ranging from 0.15 to 0.50. Study results suggest the possibility of using optical remote sensing to monitor and map vineyard shaded area, thus providing spatially explicit input to water budget models that invoke evapotranspiration crop coefficient based calculations.


2019 ◽  
Vol 12 (2) ◽  
pp. 26-40
Author(s):  
Sheriza Mohd Razali ◽  
Ahmad Ainuddin Nuruddin ◽  
Marryanna Lion

Abstract Mangroves critically require conservation activity due to human encroachment and environmental unsustainability. The forests must be conserving through monitoring activities with an application of remote sensing satellites. Recent high-resolution multispectral satellite was used to produce Normalized Difference Vegetation Index (NDVI) and Tasselled Cap transformation (TC) indices mapping for the area. Satellite Pour l’Observation de la Terre (SPOT) SPOT-6 was employed for ground truthing. The area was only a part of mangrove forest area of Tanjung Piai which estimated about 106 ha. Although, the relationship between the spectral indices and dendrometry parameters was weak, we found a very significant between NDVI (mean) and stem density (y=10.529x + 12.773) with R2=0.1579. The sites with NDVI calculated varied from 0.10 to 0.26 (P1 and P2), under the environmental stress due to sand deposition found was regard as unhealthy vegetation areas. Whereas, site P5 with NDVI (mean) 0.67 is due to far distance from risk wave’s zone, therefore having young/growing trees with large lush green cover was regard as healthy vegetation area. High greenness indicated in TC means, the bands respond to a combination of high absorption of chlorophyll in the visible bands and the high reflectance of leaf structures in the near-infrared band, which is characteristic of healthy green vegetation. Overall, our study showed our tested WV-2 image combined with ground data provided valuable information of mangrove health assessment for Tanjung Piai, Johor, Malay Peninsula.


2017 ◽  
Vol 24 (2) ◽  
pp. 141-155 ◽  
Author(s):  
Carmelo Alonso ◽  
Ana M. Tarquis ◽  
Ignacio Zúñiga ◽  
Rosa M. Benito

Abstract. Several studies have shown that vegetation indexes can be used to estimate root zone soil moisture. Earth surface images, obtained by high-resolution satellites, presently give a lot of information on these indexes, based on the data of several wavelengths. Because of the potential capacity for systematic observations at various scales, remote sensing technology extends the possible data archives from the present time to several decades back. Because of this advantage, enormous efforts have been made by researchers and application specialists to delineate vegetation indexes from local scale to global scale by applying remote sensing imagery. In this work, four band images have been considered, which are involved in these vegetation indexes, and were taken by satellites Ikonos-2 and Landsat-7 of the same geographic location, to study the effect of both spatial (pixel size) and radiometric (number of bits coding the image) resolution on these wavelength bands as well as two vegetation indexes: the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). In order to do so, a multi-fractal analysis of these multi-spectral images was applied in each of these bands and the two indexes derived. The results showed that spatial resolution has a similar scaling effect in the four bands, but radiometric resolution has a larger influence in blue and green bands than in red and near-infrared bands. The NDVI showed a higher sensitivity to the radiometric resolution than EVI. Both were equally affected by the spatial resolution. From both factors, the spatial resolution has a major impact in the multi-fractal spectrum for all the bands and the vegetation indexes. This information should be taken in to account when vegetation indexes based on different satellite sensors are obtained.


2020 ◽  
Vol 12 (17) ◽  
pp. 2677
Author(s):  
Maya Deepak ◽  
Sarita Keski-Saari ◽  
Laure Fauch ◽  
Lars Granlund ◽  
Elina Oksanen ◽  
...  

The goal of this study was to investigate the variation in the leaf spectral reflectance and its association with other leaf traits from 12 genotypes among three provenances of origin (populations) in a common garden for Finnish silver birch trees in 2015 and 2016. The spectral reflectance was measured in the laboratory from the detached leaves in the wavelength range of visible and near-infrared (VNIR, 400–1000 nm) and shortwave infrared (SWIR, 1000–2500 nm). The variation among the provenance was initially visualized with principal component analysis (PCA) and a clear separation among the provenances was detected with the discriminant analysis of principal components (DAPC) and partial least squares discriminant analysis (PLS-DA) depicting a less strong variation among the genotypes within the provenances. Wavelengths contributing to the separation of the genotypes and provenances were identified from the contribution plot of DAPC and the red edge was strongly related to the differences. Chlorophyll content showed clear provenance variation and was associated with the separation among the genotypes and provenances in the DAPC space. The normalized difference vegetation index (NDVI705,750) and chlorophyll reflectance index (CRI) showed clear significance among the provenances, whereas NDVI670,780 showed no variation. The variation in the chlorophyll content and the CRI and red edge-based NDVI indices indicated seasonal variation as the chlorophyll content starts increasing in early June. The correlation of foliar chlorophyll content and the chlorophyll-related spectral indices for the discrimination of provenances and genotypes are reported for the first time in a naturally occurring tree species consecutively for two years.


2020 ◽  
Vol 48 (12) ◽  
pp. 1787-1795
Author(s):  
B. Balaji Naik ◽  
H. R. Naveen ◽  
G. Sreenivas ◽  
K. Karun Choudary ◽  
D. Devkumar ◽  
...  

AbstractRealization of agricultural crop condition through field survey is quite expensive, time consuming and sometimes not practical for remote locations. Optical remote sensing techniques can provide information on real condition of the crops by observing spectral reflectance at different crop growth phases and is less expensive and less time consuming. Hyperspectral remote sensing provides a unique opportunity for non-destructive, timely and accurate estimation of crop biophysical and biochemical properties. In this study, a field experiment was conducted to identify the water and nitrogen stress indicative spectral bands using ground-based hyperspectral data and to assess the predictive capability of selective bands on yield of maize under water and nitrogen stress environment. The experiment comprised of three irrigation scheduling treatments based on IW/CPE ration of 0.6, 0.8 and 1.2 and three nitrogen level treatments, i.e., 100, 200 and 300 kg of N ha−1, respectively, with three replications in a split plot design. The spectral reflectance was measured before irrigation at tasseling and dough stage of the maize crop using portable field spectroradiometer. The results of stepwise multiple linear regression indicated the highest predicting capability of spectral bands 540 nm, 780 nm and 860 nm for leaf nitrogen and 700 nm, 740 nm and 860 nm for leaf water content. The derived biophysical parameters based on spectral reflectance viz. relative leaf water content (%), leaf area index and leaf nitrogen contentment (%) at tasseling stage of maize crop accounted for 80%, 61% and 66% variation in grain yield, respectively.


2019 ◽  
Vol 21 (2) ◽  
pp. 1310-1320
Author(s):  
Cícera Celiane Januário da Silva ◽  
Vinicius Ferreira Luna ◽  
Joyce Ferreira Gomes ◽  
Juliana Maria Oliveira Silva

O objetivo do presente trabalho é fazer uma comparação entre a temperatura de superfície e o Índice de Vegetação por Diferença Normalizada (NDVI) na microbacia do rio da Batateiras/Crato-CE em dois períodos do ano de 2017, um chuvoso (abril) e um seco (setembro) como também analisar o mapa de diferença de temperatura nesses dois referidos períodos. Foram utilizadas imagens de satélite LANDSAT 8 (banda 10) para mensuração de temperatura e a banda 4 e 5 para geração do NDVI. As análises demonstram que no mês de abril a temperatura da superfície variou aproximadamente entre 23.2ºC e 31.06ºC, enquanto no mês correspondente a setembro, os valores variaram de 25°C e 40.5°C, sendo que as maiores temperaturas foram encontradas em locais com baixa densidade de vegetação, de acordo com a carta de NDVI desses dois meses. A maior diferença de temperatura desses dois meses foi de 14.2°C indicando que ocorre um aumento da temperatura proporcionado pelo período que corresponde a um dos mais secos da região, diferentemente de abril que está no período de chuvas e tem uma maior umidade, presença de vegetação e corpos d’água que amenizam a temperatura.Palavras-chave: Sensoriamento Remoto; Vegetação; Microbacia.                                                                                  ABSTRACTThe objective of the present work is to compare the surface temperature and the Normalized Difference Vegetation Index (NDVI) in the Batateiras / Crato-CE river basin in two periods of 2017, one rainy (April) and one (September) and to analyze the temperature difference map in these two periods. LANDSAT 8 (band 10) satellite images were used for temperature measurement and band 4 and 5 for NDVI generation. The analyzes show that in April the surface temperature varied approximately between 23.2ºC and 31.06ºC, while in the month corresponding to September, the values ranged from 25ºC and 40.5ºC, and the highest temperatures were found in locations with low density of vegetation, according to the NDVI letter of these two months. The highest difference in temperature for these two months was 14.2 ° C, indicating that there is an increase in temperature provided by the period that corresponds to one of the driest in the region, unlike April that is in the rainy season and has a higher humidity, presence of vegetation and water bodies that soften the temperature.Key-words: Remote sensing; Vegetation; Microbasin.RESUMENEl objetivo del presente trabajo es hacer una comparación entre la temperatura de la superficie y el Índice de Vegetación de Diferencia Normalizada (NDVI) en la cuenca Batateiras / Crato-CE en dos períodos de 2017, uno lluvioso (abril) y uno (Septiembre), así como analizar el mapa de diferencia de temperatura en estos dos períodos. Las imágenes de satélite LANDSAT 8 (banda 10) se utilizaron para la medición de temperatura y las bandas 4 y 5 para la generación de NDVI. Los análisis muestran que en abril la temperatura de la superficie varió aproximadamente entre 23.2ºC y 31.06ºC, mientras que en el mes correspondiente a septiembre, los valores oscilaron entre 25 ° C y 40.5 ° C, y las temperaturas más altas se encontraron en lugares con baja densidad de vegetación, según el gráfico NDVI de estos dos meses. La mayor diferencia de temperatura de estos dos meses fue de 14.2 ° C, lo que indica que hay un aumento en la temperatura proporcionada por el período que corresponde a uno de los más secos de la región, a diferencia de abril que está en la temporada de lluvias y tiene una mayor humedad, presencia de vegetación y cuerpos de agua que suavizan la temperatura.Palabras clave: Detección remota; vegetación; Cuenca.


Sign in / Sign up

Export Citation Format

Share Document