scholarly journals Seasonal dynamics of lingonberry and blueberry spectra

Silva Fennica ◽  
2019 ◽  
Vol 53 (2) ◽  
Author(s):  
Petri Forsström ◽  
Jouni Peltoniemi ◽  
Miina Rautiainen

Accurate mapping of the spatial distribution of understory species from spectral images requires ground reference data which represent the prevailing phenological stage at the time of image acquisition. We measured the spectral bidirectional reflectance factors (BRFs, 350–2500 nm) at varying view angles for lingonberry ( L.) and blueberry ( L.) throughout the growing season of 2017 using Finnish Geospatial Research Institute’s FIGIFIGO field goniometer. Additionally, we measured spectra of leaves and berries of both species, and flowers of lingonberry. Both lingonberry and blueberry showed seasonality in visible and near-infrared spectral regions which was linked to occurrences of leaf growth, flowering, berrying, and leaf senescence. The seasonality of spectra differed between species due to different phenologies (evergreen vs. deciduous). Vegetation indices, normalized difference vegetation index (NDVI), moisture stress index (MSI), plant senescence reflectance index (PSRI), and red-edge inflection point (REIP2), showed characteristic seasonal trends. NDVI and PSRI were sensitive to the presence of flowers and berries of lingonberry, while with blueberry the effects were less evident. Off-nadir observations supported differentiating the dwarf shrub species from each other but showed little improvement for detection of flowers and berries. Lingonberry and blueberry can be identified by their spectral signatures if ground reference data are available over the entire growing season. The spectral data measured in this study are reposited in the publicly open SPECCHIO Spectral Information System.Vaccinium vitis-idaeaVaccinium myrtillus

Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 346-353 ◽  
Author(s):  
Francisca López-Granados ◽  
Montse Jurado-Expósito ◽  
Jose M. Peña-Barragán ◽  
Luis García-Torres

Field research was conducted to determine the potential of hyperspectral and multispectral imagery for late-season discrimination and mapping of grass weed infestations in wheat. Differences in reflectance between weed-free wheat and wild oat, canarygrass, and ryegrass were statistically significant in most 25-nm-wide wavebands in the 400- and 900-nm spectrum, mainly due to their differential maturation. Visible (blue, B; green, G; red, R) and near infrared (NIR) wavebands and five vegetation indices: Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), R/B, NIR-R and (R − G)/(R + G), showed potential for discriminating grass weeds and wheat. The efficiency of these wavebands and indices were studied by using color and color-infrared aerial images taken over three naturally infested fields. In StaCruz, areas infested with wild oat and canarygrass patches were discriminated using the indices R, NIR, and NDVI with overall accuracies (OA) of 0.85 to 0.90. In Florida–West, areas infested with wild oat, canarygrass, and ryegrass were discriminated with OA from 0.85 to 0.89. In Florida–East, for the discrimination of the areas infested with wild oat patches, visible wavebands and several vegetation indices provided OA of 0.87 to 0.96. Estimated grass weed area ranged from 56 to 71%, 43 to 47%, and 69 to 80% of the field in the three locations, respectively, with per-class accuracies from 0.87 to 0.94. NDVI was the most efficient vegetation index, with a highly accurate performance in all locations. Our results suggest that mapping grass weed patches in wheat is feasible with high-resolution satellite imagery or aerial photography acquired 2 to 3 wk before crop senescence.


2018 ◽  
Vol 10 (8) ◽  
pp. 1293 ◽  
Author(s):  
Yunpeng Luo ◽  
Tarek S. El-Madany ◽  
Gianluca Filippa ◽  
Xuanlong Ma ◽  
Bernhard Ahrens ◽  
...  

Tree–grass ecosystems are widely distributed. However, their phenology has not yet been fully characterized. The technique of repeated digital photographs for plant phenology monitoring (hereafter referred as PhenoCam) provide opportunities for long-term monitoring of plant phenology, and extracting phenological transition dates (PTDs, e.g., start of the growing season). Here, we aim to evaluate the utility of near-infrared-enabled PhenoCam for monitoring the phenology of structure (i.e., greenness) and physiology (i.e., gross primary productivity—GPP) at four tree–grass Mediterranean sites. We computed four vegetation indexes (VIs) from PhenoCams: (1) green chromatic coordinates (GCC), (2) normalized difference vegetation index (CamNDVI), (3) near-infrared reflectance of vegetation index (CamNIRv), and (4) ratio vegetation index (CamRVI). GPP is derived from eddy covariance flux tower measurement. Then, we extracted PTDs and their uncertainty from different VIs and GPP. The consistency between structural (VIs) and physiological (GPP) phenology was then evaluated. CamNIRv is best at representing the PTDs of GPP during the Green-up period, while CamNDVI is best during the Dry-down period. Moreover, CamNIRv outperforms the other VIs in tracking growing season length of GPP. In summary, the results show it is promising to track structural and physiology phenology of seasonally dry Mediterranean ecosystem using near-infrared-enabled PhenoCam. We suggest using multiple VIs to better represent the variation of GPP.


Author(s):  
Abdon Francisco Aureliano Netto ◽  
Rodrigo Nogueira Martins ◽  
Guilherme Silverio Aquino De Souza ◽  
Fernando Ferreira Lima Dos Santos ◽  
Jorge Tadeu Fim Rosas

This study aimed to modify a webcam by replacing its near-infrared (NIR) blocking filter to a low-cost red, green and blue (RGB) filter for obtaining NIR images and to evaluate its performance in two agricultural applications. First, the sensitivity of the webcam to differentiate normalized difference vegetation index (NDVI) levels through five nitrogen (N) doses applied to the Batatais grass (Paspalum notatum Flugge) was verified. Second, images from maize crops were processed using different vegetation indices, and thresholding methods with the aim of determining the best method for segmenting crop canopy from the soil. Results showed that the webcam sensor was capable of detecting the effect of N doses through different NDVI values at 7 and 21 days after N application. In the second application, the use of thresholding methods, such as Otsu, Manual, and Bayes when previously processed by vegetation indices showed satisfactory accuracy (up to 73.3%) in separating the crop canopy from the soil.


2005 ◽  
Vol 59 (6) ◽  
pp. 836-843 ◽  
Author(s):  
Jennifer Pontius ◽  
Richard Hallett ◽  
Mary Martin

Near-infrared reflectance spectroscopy was evaluated for its effectiveness at predicting pre-visual decline in eastern hemlock trees. An ASD FieldSpec Pro FR field spectroradiometer measuring 2100 contiguous 1-nm-wide channels from 350 nm to 2500 nm was used to collect spectra from fresh hemlock foliage. Full spectrum partial least squares (PLS) regression equations and reduced stepwise linear regression equations were compared. The best decline predictive model was a 6-term linear regression equation ( R2 = 0.71, RMSE = 0.591) based on: Carter Miller Stress Index (R694/R760), Derivative Chlorophyll Index (FD705/FD723), Normalized Difference Vegetation Index ((R800 – R680)/(R800 + R680)), R950, R1922, and FD1388. Accuracy assessment showed that this equation predicted an 11-class decline rating with a 1-class tolerance accuracy of 96% and differentiated healthy trees from those in very early decline with 72% accuracy. These results indicate that narrow-band sensors could be developed to detect very early stages of hemlock decline, before visual symptoms are apparent. This capability would enable land managers to identify early hemlock woolly adelgid infestations and monitor forest health over large areas of the landscape.


2020 ◽  
Vol 12 (1) ◽  
pp. 136 ◽  
Author(s):  
Athos Agapiou

Subsurface targets can be detected from space-borne sensors via archaeological proxies, known in the literature as cropmarks. A topic that has been limited in its investigation in the past is the identification of the optimal spatial resolution of satellite sensors, which can better support image extraction of archaeological proxies, especially in areas with spectral heterogeneity. In this study, we investigated the optimal spatial resolution (OSR) for two different cases studies. OSR refers to the pixel size in which the local variance, of a given area of interest (e.g., archaeological proxy), is minimized, without losing key details necessary for adequate interpretation of the cropmarks. The first case study comprises of a simulated spectral dataset that aims to model a shallow buried archaeological target cultivated on top with barley crops, while the second case study considers an existing site in Cyprus, namely the archaeological site of “Nea Paphos”. The overall methodology adopted in the study is composed of five steps: firstly, we defined the area of interest (Step 1), then we selected the local mean-variance value as the optimization criterion of the OSR (Step 2), while in the next step (Step 3), we spatially aggregated (upscale) the initial spectral datasets for both case studies. In our investigation, the spectral range was limited to the visible and near-infrared part of the spectrum. Based on these findings, we determined the OSR (Step 4), and finally, we verified the results (Step 5). The OSR was estimated for each spectral band, namely the blue, green, red, and near-infrared bands, while the study was expanded to also include vegetation indices, such as the Simple Ratio (SR), the Atmospheric Resistance Vegetation Index (ARVI), and the Normalized Difference Vegetation Index (NDVI). The outcomes indicated that the OSR could minimize the local spectral variance, thus minimizing the spectral noise, and, consequently, better support image processing for the extraction of archaeological proxies in areas with high spectral heterogeneity.


Author(s):  
M. Ustuner ◽  
F. B. Sanli ◽  
S. Abdikan ◽  
M. T. Esetlili ◽  
Y. Kurucu

Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46 % was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands.


Drones ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 80
Author(s):  
Milton Valencia-Ortiz ◽  
Worasit Sangjan ◽  
Michael Gomez Selvaraj ◽  
Rebecca J. McGee ◽  
Sindhuja Sankaran

Normalization of anisotropic solar reflectance is an essential factor that needs to be considered for field-based phenotyping applications to ensure reliability, consistency, and interpretability of time-series multispectral data acquired using an unmanned aerial vehicle (UAV). Different models have been developed to characterize the bidirectional reflectance distribution function. However, the substantial variation in crop breeding trials, in terms of vegetation structure configuration, creates challenges to such modeling approaches. This study evaluated the variation in standard vegetation indices and its relationship with ground-reference data (measured crop traits such as seed/grain yield) in multiple crop breeding trials as a function of solar zenith angles (SZA). UAV-based multispectral images were acquired and utilized to extract vegetation indices at SZA across two different latitudes. The pea and chickpea breeding materials were evaluated in a high latitude (46°36′39.92″ N) zone, whereas the rice lines were assessed in a low latitude (3°29′42.43″ N) zone. In general, several of the vegetation index data were affected by SZA (e.g., normalized difference vegetation index, green normalized difference vegetation index, normalized difference red-edge index, etc.) in both latitudes. Nevertheless, the simple ratio index (SR) showed less variability across SZA in both latitude zones amongst these indices. In addition, it was interesting to note that the correlation between vegetation indices and ground-reference data remained stable across SZA in both latitude zones. In summary, SR was found to have a minimum anisotropic reflectance effect in both zones, and the other vegetation indices can be utilized to evaluate relative differences in crop performances, although the absolute data would be affected by SZA.


2005 ◽  
Vol 15 (4) ◽  
pp. 859-863 ◽  
Author(s):  
Lee Johnson ◽  
Thibaut Scholasch

Airborne multispectral image data were compared with intercepted photosynthetic photon flux (PPF) in commercial winegrape (Vitis vinifera) vineyards of Napa Valley, Calif. An empirically based calibration was applied to transform raw image pixel values to surface reflectance. Reflectance data from the red and near-infrared spectral regions were combined into a normalized difference vegetation index. Strong linear response was observed between the vegetation index and PPF interception ranging from 0.15 to 0.50. Study results suggest the possibility of using optical remote sensing to monitor and map vineyard shaded area, thus providing spatially explicit input to water budget models that invoke evapotranspiration crop coefficient based calculations.


2021 ◽  
Vol 13 (24) ◽  
pp. 4959
Author(s):  
Alana Almeida de Souza ◽  
Lênio Soares Galvão ◽  
Thales Sehn Korting ◽  
Cláudio Aparecido Almeida

Remote sensing of disturbance in the savannas from Brazil is challenging, especially due to confounding effects of the vegetation phenology and natural soil exposure on the detection of clearing and fire events. In this study, we investigated the detection of disturbance over this global hotspot of biodiversity using seven vegetation indices (VIs) calculated from the Landsat time series (2017–2019) and the Continuous Change Detection and Classification (CCDC) algorithm. The selected VIs represented distinct biophysical characteristics of the savannas. We evaluated the effects of disturbance on these VIs and assessed the accuracy of CCDC-detection in 2019, considering individual VIs, ensemble VIs, and the type of disturbance (savanna clearing and fire). Finally, we analyzed the possible existence of seasonal patterns of disturbance in a study area located at the new agricultural frontier of the Cerrado biome. The results showed that the overall accuracy of CCDC detection of total disturbance ranged from 51.2% for the Green-Red Normalized Difference (GRND) to 65.9% for the Normalized Burn Ratio (NBR2). It increased to 71.2% for ensemble VIs, whose multivariate approach reduced the omission errors in the analysis when compared to the use of single VIs. For detecting events of savanna clearing and fire, the most important VIs used near-infrared and shortwave infrared reflectance bands on their formulations (NBR2, NBR, and Moisture Stress Index—MSI). The CCDC accuracy was generally higher for detecting clearing than for mapping burned areas. In contrast, the recorded date of disturbance occurrence was less precise for detecting clearing than for recording events caused by fire, especially due to the existence of some gradual processes of vegetation degradation until complete clearing. Our findings showed also the existence of a seasonal pattern of disturbance occurrence. Savanna clearing predominated in the transition from the rainy to the dry season (April to July) to open new areas for agriculture. It preceded most events of fire disturbance between August and October that occurred near the consolidated areas of agriculture and extended into the native vegetation areas. Results reinforce the importance of data-driven approaches for generating early warning alerts of disturbance in the Cerrado to be further checked in the field.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 581 ◽  
Author(s):  
Luís Pádua ◽  
Pedro Marques ◽  
Telmo Adão ◽  
Nathalie Guimarães ◽  
António Sousa ◽  
...  

Climate change is projected to be a key influence on crop yields across the globe. Regarding viticulture, primary climate vectors with a significant impact include temperature, moisture stress, and radiation. Within this context, it is of foremost importance to monitor soils’ moisture levels, as well as to detect pests, diseases, and possible problems with irrigation equipment. Regular monitoring activities will enable timely measures that may trigger field interventions that are used to preserve grapevines’ phytosanitary state, saving both time and money, while assuring a more sustainable activity. This study employs unmanned aerial vehicles (UAVs) to acquire aerial imagery, using RGB, multispectral and thermal infrared sensors in a vineyard located in the Portuguese Douro wine region. Data acquired enabled the multi-temporal characterization of the vineyard development throughout a season through the computation of the normalized difference vegetation index, crop surface models, and the crop water stress index. Moreover, vigour maps were computed in three classes (high, medium, and low) with different approaches: (1) considering the whole vineyard, including inter-row vegetation and bare soil; (2) considering only automatically detected grapevine vegetation; and (3) also considering grapevine vegetation by only applying a normalization process before creating the vigour maps. Results showed that vigour maps considering only grapevine vegetation provided an accurate representation of the vineyard variability. Furthermore, significant spatial associations can be gathered through (i) a multi-temporal analysis of vigour maps, and (ii) by comparing vigour maps with both height and water stress estimation. This type of analysis can assist, in a significant way, the decision-making processes in viticulture.


Sign in / Sign up

Export Citation Format

Share Document