scholarly journals In-ground Irrigation Systems Affect Lawn-watering Behaviors of Residential Homeowners

2012 ◽  
Vol 22 (5) ◽  
pp. 651-658 ◽  
Author(s):  
Dale J. Bremer ◽  
Steven J. Keeley ◽  
Abigail Jager ◽  
Jack D. Fry ◽  
Cathie Lavis

Urbanization is increasing the land area covered with turfgrasses, which may have implications for water quantity and quality. The largest sector of turfgrass is residential lawns. Our objectives were to compare lawn-irrigation perceptions, knowledge, and behaviors of residential homeowners with and without in-ground sprinkler systems (IGS and NIGS, respectively); homeowners were surveyed in three Kansas cities, each with distinctive water quantity and quality issues. Surveys were mailed to 15,500 homeowners in Wichita, 10,000 in Olathe, and 5000 in Salina; the return rate was 11% to 13%. Homeowners with IGS watered more frequently than NIGS; 67% to 90% of IGS and 19% to 31% of NIGS homeowners watered two to three times per week or more. More IGS homeowners watered routinely and applied the same amount of water each time than NIGS homeowners, who mostly watered and adjusted watering amounts based on lawn dryness. More IGS than NIGS homeowners wanted their lawn green all the time, followed lawn-care guidelines, and considered their neighborhood appearance important. Among IGS homeowners, 41% to 54% claimed to know how much water their lawns required compared with only 29% to 33% of NIGS homeowners. However, 65% to 83% in both groups did not know how much water they applied when they irrigated. About 7% to 9% of homeowners swept or blew clippings or lawn-care products into streets or storm drains; this percentage was unaffected by whether they had IGS or not. All homeowners’ lawn irrigation knowledge and habits must be improved to help conserve water and protect water quality, but educational efforts should concentrate on IGS homeowners because they water more frequently.

2016 ◽  
Author(s):  
Awoke D. Teshager ◽  
Philip W. Gassman ◽  
Justin T. Schoof ◽  
Silvia Secchi

Abstract. Modeling impacts of agricultural scenarios and climate change on surface water quantity and quality provides useful information for planning effective water, environmental, and land use policies. Despite the significant impacts of agriculture on water quantity and quality, limited literature exists that describes the combined impacts of agricultural land use change and climate change on future bioenergy crop yields and watershed hydrology. In this study, the Soil and Water Assessment Tool (SWAT) eco-hydrological model was used to model the combined impacts of five agricultural land use change scenarios and three downscaled climate pathways (representative concentration pathways, RCPs) that were created from an ensemble of eight atmosphere-ocean general circulation models (AOGCMs). These scenarios were implemented in a well calibrated SWAT model for the Raccoon River watershed (RRW) located in western Iowa. The scenarios were executed for the historical baseline, early-century, mid-century, and late-century periods. The results indicate that historical and more corn intensive agricultural scenarios with higher CO2 emissions consistently result in more water in the streams and greater water quality problems, especially late in the 21st century. Planting more switchgrass, on the other hand, results in less water in the streams and water quality improvements relative to the baseline. For all given agricultural landscapes simulated, all flow, sediment and nutrient outputs increase from early-to-late century periods for the RCP4.5 and RCP8.5 climate scenarios. We also find that corn and switchgrass yields are negatively impacted under RCP4.5 and RCP8.5 scenarios in the mid and late 21st century.


Author(s):  
Xinghua Ma ◽  
Maichun Zhou ◽  
Xingyi Ding ◽  
Bo Zhang

Abstract Studying the change mechanism of water quantity and quality is the basis for joint optimization of water resources system, which is a significant means for modern regional water resources management. A water quantity and quality joint optimization model is built based on multiple control objectives, which includes water demand, observed flow rate, and observed pollutant concentration. Coupled water quantity and water quality model was developed for Nanning, China. The natural water cycle and social water cycle in Nanning City and the associated pollutant transport transformation process are simulated. The results indicate that simulation error of water resources allocation is below 5%, the Nash-Sutcliffe efficiency coefficients of the three hydrological stations are 0.85, 0.88, and 0.85 respectively, and the relative errors of the simulated results of three water quality monitoring stations are all within 1.83%, all of which indicates that the model performs well and the simulation results can reproduce the water use process and pollutant transport transformation process of Nanning in time and space. This study can provide effective support for water resources management in Nanning City.


EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Alexa J. Lamm ◽  
Phillip S. Stokes ◽  
Caroline G. Roper

The conservation and preservation of natural resources is one of the most pressing issues facing the nation today (Gregory & Di Leo, 2003). Among these natural resource issues are the issues of water quality and quantity. Water is one of the most important resources in the United States, and is especially important in Florida. Not only is Florida a specialty crop state, but the Florida economy also depends highly on tourism and recreation, both of which thrive on water. Water impacts Florida’s tourism, agriculture, retail, and real estate development industries, all of which significantly contribute to Florida’s economy (Odera, Lamm, Dukes, Irani, & Carter, 2013). As the U.S. and Florida populations continue to increase and the demand for fresh, clean water rises, water quality and quantity issues will become increasingly important. Extension faculty should understand public opinion surrounding water issues and identify the information that needs to be communicated to the public about water issues, as well as the best mode for this communication. By understanding public opinion and topics of interest surrounding water quantity and quality, as well as Florida residents’ preferred communication methods, Extension faculty will be able to communicate more effectively with clients about water. The issues associated with water quantity and quality are of ever-increasing importance, and are considered a priority by UF/IFAS Extension. Enhancing and protecting water quality, quantity, and supply is considered a high-priority initiative in the 2013–2023 Florida Extension Roadmap. This EDIS publication will provide an overview of how to communicate with Florida residents about water, including information about their preferred communication method and what topics surrounding water Florida residents find of interest. This publication will better equip Extension faculty to discuss water quantity and quality issues with Florida residents.


2015 ◽  
Vol 25 (1) ◽  
pp. 90-97 ◽  
Author(s):  
Dale J. Bremer ◽  
Steven J. Keeley ◽  
Abigail Jager

Urbanization is increasing the land area covered with turfgrasses, which may affect water quantity and quality. Our objective was to understand lawn-watering habits of homeowners in Olathe and Wichita, KS, based on home value, home age, and lot size. Surveys were mailed to 9992 homeowners in Olathe and 15,534 in Wichita, with a return rate of 12%. Owners of more expensive and/or newer homes were more likely to water frequently, water on a routine schedule, feel it was important to have a green lawn, have an in-ground sprinkler system, and sweep or blow grass clippings and lawn care products off impervious surfaces. Owners of less expensive and/or older homes were more likely to never water or water infrequently, water based on the lawn’s appearance rather than on a routine schedule, consider it less important to have a green lawn; not have an in-ground sprinkler system, and leave grass clippings and lawn care products on impervious surfaces rather than blowing them off. A small percentage of homeowners who swept or blew clippings and/or lawn-care products did so into streets/storm drains. Owners of less expensive and/or older homes were somewhat more likely to engage in this practice. Educational efforts to improve lawn water conservation should be concentrated on homeowners in more expensive and/or newer homes because they water more frequently and routinely. Efforts to protect surface water quality should include homeowners of less expensive and/or older homes.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 718
Author(s):  
Jeongho Han ◽  
Dongjun Lee ◽  
Seoro Lee ◽  
Se-Woong Chung ◽  
Seong Kim ◽  
...  

The impact of the channel geometry on water quantity and quality simulation of the Soil and Water Assessment Tool (SWAT) was evaluated for the Andong Dam watershed. The new equations to determine the bankfull width of the channels and the bottom width of the floodplains were developed using aerial photographs, and its performance was compared with the current equations of SWAT. The new equations were more exact than the current equations since the current equations tended to overestimate the widths of the channel and floodplain. When compared with the observed data, the streamflow of the scenario 2 (S2, applying the new equations) showed lower deviation and higher accuracy than scenario 1 (S1, applying the current equations) because the peak flow of S2 captured the observed data better due to the impact of the change geometry. Moreover, the water quality results of S2 outperformed S1 regarding suspended solid, total nitrogen, and dissolved oxygen. This is attributed to the variables, such as flow travel time, which is directly related to the channel geometry. Additionally, SWAT was modified to consider the various channel cross-sectional shapes. The results of this study suggest that the channel geometry information for the water quantity and quality estimation should be carefully applied, which could improve the model performance regarding streamflow and water quality simulations.


2016 ◽  
Vol 20 (8) ◽  
pp. 3325-3342 ◽  
Author(s):  
Awoke D. Teshager ◽  
Philip W. Gassman ◽  
Justin T. Schoof ◽  
Silvia Secchi

Abstract. Modeling impacts of agricultural scenarios and climate change on surface water quantity and quality provides useful information for planning effective water, environmental and land use policies. Despite the significant impacts of agriculture on water quantity and quality, limited literature exists that describes the combined impacts of agricultural land use change and climate change on future bioenergy crop yields and watershed hydrology. In this study, the soil and water assessment tool (SWAT) eco-hydrological model was used to model the combined impacts of five agricultural land use change scenarios and three downscaled climate pathways (representative concentration pathways, RCPs) that were created from an ensemble of eight atmosphere–ocean general circulation models (AOGCMs). These scenarios were implemented in a well-calibrated SWAT model for the intensively farmed and tiled Raccoon River watershed (RRW) located in western Iowa. The scenarios were executed for the historical baseline, early century, mid-century and late century periods. The results indicate that historical and more corn intensive agricultural scenarios with higher CO2 emissions consistently result in more water in the streams and greater water quality problems, especially late in the 21st century. Planting more switchgrass, on the other hand, results in less water in the streams and water quality improvements relative to the baseline. For all given agricultural landscapes simulated, all flow, sediment and nutrient outputs increase from early-to-late century periods for the RCP4.5 and RCP8.5 climate scenarios. We also find that corn and switchgrass yields are negatively impacted under RCP4.5 and RCP8.5 scenarios in the mid- and late 21st century.


2021 ◽  
Author(s):  
Chaogui Lei ◽  
Paul D. Wagner ◽  
Nicola Fohrer

Abstract. Understanding the impacts of land use changes (LUCC) on the dynamics of water quantity and quality is necessary to identify suitable mitigation measures that are needed for sustainable watershed management. Lowland catchments are characterized by a strong interaction of streamflow and near-surface groundwater that intensifies the risk of nutrient pollution. This study aims to reveal the relationship between long-term land use change and the water and nutrient balance in a typical lowland catchment in northern Germany. A hydrologic model (Soil and Water Assessment Tool, SWAT) and partial least squares regression (PLSR) were used to quantify the impacts of different land use types on the variations in actual evapotranspiration (ET), surface runoff (SQ), base flow (BF), and water yield (WYLD) as well as on sediment yield (SED), total phosphorus (TP) and total nitrogen (TN) loads. To this end, the model was calibrated and validated with daily streamflow data (30 years) as well as sediment and nutrient data from two water quality measurement campaigns (3 years in total). Three model runs over thirty years were performed using land use maps of 1987, 2010, and 2019, respectively. Land use changes between those years were used to explain the modelled changes in water quantity and quality on the subbasin scale applying PLSR. SWAT achieved a very good performance for daily streamflow values (calibration: NSE = 0.79, KGE = 0.88, PBIAS = 0.3 %; validation: NSE = 0.79, KGE = 0.87, PBIAS = 7.2 %), a satisfactory to very good performance for daily TN (calibration: NSE = 0.64, KGE = 0.71, PBIAS = −11.5 %; validation: NSE = 0.86, KGE = 0.91, PBIAS = 5 %), a satisfactory performance for daily sediment load (NSE = 0.54–0.65, KGE = 0.58–0.59, PBIAS = −22.2 %–12 %), and an acceptable performance for daily TP (calibration: NSE = 0.56, KGE = 0.65, PBIAS = −4.7 %; validation: NSE = 0.29, KGE = 0.22, PBIAS = −46.2 %) in the Stör Catchment. The variations in ET, SQ, BF, WYLD, SED, TP, and TN could be explained to an extent of 61 %–88 % by changes in the area, shape, dominance, and aggregation of individual land use types. They were largely correlated with the major LUCC in the study area i.e. a decrease of arable land, and a respective increase of pasture and settlement. The change in the areal percentage of arable land positively affected the dynamics of SED, TP, TN and negatively affected BF, indicated by a Variable Influence on Projection (VIP) > 1.16 and large absolute regression coefficients (RCs: 0.6–0.88 for SED, TP, TN; −1.65 for BF). The change in pasture area was negatively affecting SED, TP, and TN (RCs: −0.69–−0.12, VIPs > 1) while positively affecting ET (RC: 0.09, VIP: 0.92). The change in settlement percentage had a VIP of up to 1.17 for SQ and positively and significantly influenced it (RC: 1.16, p-value < 0.001). PLSR helped to identify the key contributions from individual land use changes on water quantity and quality dynamics. These provide a quantitative basis for targeting most influential land use changes to mitigate impacts on water quality in the future.


1989 ◽  
Vol 21 (2) ◽  
pp. 281-288 ◽  
Author(s):  
W. J. Hawkins ◽  
D. A. Geering

Water quality standards set in the past have not helped resource managers in the decisions that they face in seeking sustainable development. Resource managers are looking for meaningful information on water quality so as to evaluate the resource, set priorities for action, and to monitor progress. Resource managers need to know how water quality affects, and is affected by, catchment uses and activities. Examples of three wild and scenic rivers, the Nymboida, Murrumbidgee, and Hawkesbury/Nepean River systems, demonstrate how a ‘Total Catchment Management' approach to resource use and resource protection has advantages for water quality management.


2010 ◽  
Vol 91 (7) ◽  
pp. 1511-1525 ◽  
Author(s):  
Xixi Wang ◽  
Shiyou Shang ◽  
Zhongyi Qu ◽  
Tingxi Liu ◽  
Assefa M. Melesse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document