scholarly journals Plant Growth Stimulator Effects on Post-transplant Growth and Flowering of Petunia and Impatiens Plugs

1998 ◽  
Vol 8 (1) ◽  
pp. 45-47
Author(s):  
Marc van Iersel

Various growth stimulators have been reported to improve plant growth. Some of these are formulated to improve root growth, which would be particularly beneficial for reestablishing transplants. Three commercially available plant growth stimulators—PGR IV (MicroFlo, Lakeland, Fla.), Roots2 (Lisa Products Corp., Independence, Mo.), and Up-Start (The Solaris Group, San Ramon, Calif.)—were tested to quantify their effect on post-transplant growth of petunia (Petunia × hybrida Hort. Vilm.-Andr.) and impatiens (Impatiens wallerana Hook.f.) seedlings and to assess their value for the greenhouse industry. Seedlings were transplanted from plug flats into larger 5.6-fl oz (166-cm3) containers and treated with 1.1 fl oz (31 mL) of growth stimulator per plant (22 fl oz/ft2). Applications were made immediately after transplant. None of the treatments affected root mass at any time. Up-Start (2 fl oz/gal) increased final shoot dry mass by ≈20% compared to the control plants. The increase in shoot growth by Up-Start most likely is caused by the fertilizer it contains. Up-Start also increased flowering of petunia from 34 to 40 days after transplant. PGR IV (0.5 fl oz/gal) and Roots2 (1.28 fl oz/gal) did not affect dry mass of the plants. PGR IV increased the number of flowers of petunia and impatiens, but this effect occurred well after the plants were marketable. Roots2 caused a small delay in early flowering and an increase in late flowering of petunia but had no effect on flowering of impatiens. Since the effects of the growth stimulators was either due their fertilizer content (Up-Start) or occurred after the plants would have been sold (PGR IV, Roots2), none of the growth stimulators appears to be beneficial for bedding plant producers.

1995 ◽  
Vol 13 (2) ◽  
pp. 97-103
Author(s):  
Mack Thetford ◽  
Charles H. Gilliam ◽  
J. David Williams

Abstract Three experiments were conducted to evaluate effects of preemergence applied herbicides on annual bedding plants. In experiment 1, five preemergence applied herbicides were evaluated for control of large crabgrass (Digitaria sanguinalis L. Scop.) and prostrate spurge (Euphorbia humistata Engelm. ex Gray) and phytotoxicity to spring planted herbaceous bedding plants. Dimension 0.5G (dithiopyr) applied at 1.1, 2.2 or 3.4 kg ai/ha (1.0, 2.0, or 3.0 lb ai/A), Southern Weedgrass Control (SWGC) (pendimethalin) 2.68G and Rout 3G (oxyfluorfen + oryzalin) each applied at 1.7, 3.4 or 6.7 kg ai/ha (1.5, 3.0 or 6.0 lb ai/A), Snapshot 2.5TG (trifluralin + isoxaben) applied at 3.4 or 6.7 kg ai/ha (3.0 or 6.0 lb ai/A) and Ronstar 2G (oxadiazon) applied at 4.5 kg ai/ha (4.0 lb ai/A) controlled both weeds up to 60 days after treatment (DAT). Bedding plant tolerance varied with herbicide and application rate. Basil and salvia were sensitive to Snapshot (trifluralin + isoxaben) [6.7 kg ai/ha (6.0 lb ai/A)], while Ronstar (oxadiazon) [4.5 kg ai/ha (4.0 lb ai/A)] injured begonia and impatiens. Species sensitive to Dimension (dithiopyr) at 2.2 or 3.4 kg/ha (2.0 and 3.0 lb ai/A) 60 DAT were begonia, salvia, and nicotiana. Bedding plants sensitive to SWGC (pendimethalin) were celosia and salvia. Rout (oxyfluorfen + oryzalin) was injurious to most species evaluated at 6.7 kg ai/ha (6.0 lb ai/A) and in some cases at 3.4 kg ai/ha (3.0 lb ai/A). In experiments 2 and 3, shoot growth of impatiens, geranium, basil, and ageratum was not affected by any herbicide treatment. However, impatiens root growth was suppressed (30 DAT) with Dimension (dithiopyr), Snapshot (trifluralin + isoxaben), SWGC (pendimethalin) (high rate only), and Ronstar (oxadiazon). Basil root growth was suppressed 15 DAT with Dimension (dithiopyr), Snapshot (trifluralin + isoxaben), and SWGC (pendimethalin); however, all root dry weights were similar to control root dry weights at 30 DAT.


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1549-1551 ◽  
Author(s):  
Patrick E. McCullough ◽  
Haibo Liu ◽  
Lambert B. McCarty

Plant growth regulators are applied to inhibit uneven shoot growth of putting green turf but research is limited on responses of dwarf-type bermudagrass cultivars to growth inhibition. Experiments were conducted at the Clemson University Greenhouse Complex with `Champion' and `TifEagle' bermudagrass grown in polyvinylchloride containers with 40 cm depths and 177 cm2 areas built to United States Golf Association specification. Flurprimidol was applied at 0.14, 0.28, and 0.48 kg·ha–1 a.i. and paclobutrazol at 0.14 kg·ha–1 a.i. on separate containers. Flurprimidol at 0.28 and 0.42 kg·ha-1 caused 17% and 31% reduction in turf color 5 weeks after treatment (WAT), respectively. `Champion' exhibited unacceptable turf injury (>30%) 2 WAT from paclobutrazol and all flurprimidol rates. `TifEagle' had unacceptable turf injury from flurprimidol at 0.42 kg·ha–1 2 WAT, 0.28 kg·ha–1 3 WAT, and 0.14 kg·ha–1 4 WAT that did not recover. Moderate injury (16% to 30%) was observed from paclobutrazol on `TifEagle' but ratings were acceptable. After 6 weeks, flurprimidol at 0.14, 0.28, and 0.42 kg·ha–1 reduced bermudagrass green shoot density (GSD) per square centimeter by 20%, 40%, and 40%, respectively, while paclobutrazol reduced GSD 12%. `TifEagle' total clipping yield was reduced 60%, 76%, and 86% from flurprimidol at 0.14, 0.28, and 0.42 kg·ha–1, respectively, and 37% from paclobutrazol. `Champion' total clipping yield was reduced 82%, 90%, and 90% from flurprimidol at 0.14, 0.28, and 0.42 kg·ha–1, respectively, and 58% from paclobutrazol. After 6 weeks, flurprimidol reduced `Champion' total root mass by 44% over all three rates. `Champion' treated with paclobutrazol had similar total root mass to the untreated. `TifEagle' treated with all PGRs had similar rooting to the untreated. Overall, flurprimidol will likely not be suitable for dwarf bermudagrass maintenance at these rates; however paclobutrazol may have potential at ≤0.14 kg·ha–1. Chemical names used: Flurprimidol {α-(1-methylethyl)-α-[4-(trifluoro-methoxy) phenyl] 5-pyrimidine-methanol}; Paclobutrazol, (+/-)–(R*,R*)-β-[(4-chlorophenyl) methyl]-α-(1, 1-dimethyl)-1H-1,2,4,-triazole-1-ethanol.


1999 ◽  
Vol 9 (2) ◽  
pp. 210-213 ◽  
Author(s):  
Kimberly A. Klock-Moore

Growth of `Oasis Scarlet' begonia (Begonia ×semperflorens-cultorum Hort.) and `Super Elfin Violet' impatiens (Impatiens wallerana Hook. f.) was compared in substrates containing compost made from used greenhouse substrates and yard trimmings (GHC) and in compost made from biosolids and yard trimmings (SYT). Treatments consisted of 100% compost (GHC or SYT) or compost combined with control substrate components at 60%, 30%, or 0%. Substrates containing SYT compost produced significantly larger begonia and impatiens plants than substrates containing GHC compost. Higher initial substrate nutrient concentrations in substrates containing SYT probably prompted increased begonia and impatiens growth because substrates containing SYT compost had significantly higher initial soluble salt, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) concentrations than substrates containing GHC compost. Begonia and impatiens shoot dry mass and size linearly increased as the percentage of SYT compost in the substrate increased from 0% to 100%. However, no difference in begonia or impatiens growth was observed among the different percentages of GHC compost. Initial soluble salt, N, P, K, Ca, and Mg concentrations also linearly increased as the percentage of SYT increased while only initial P, K, and Ca concentrations linearly increased as the percentage of GHC increased.


2019 ◽  
Vol 23 (2) ◽  
pp. 179
Author(s):  
Nur Prihatiningsih ◽  
Heru Adi Djatmiko ◽  
Erminawati Erminawati ◽  
Puji Lestari

Bacillus subtilis is an antagonist bacteria  that inhibits the growth of fungal and bacterial plant pathogens. The B. subtilis has roles as biocontrol agents and plant growth promoting rhizobacteria (PGPR). This research aimed to evaluate the potency of B. subtilis isolates (B209, B211, and B298) as a biocontrol agent to anthracnose (caused by Colletotrichum spp.) and as PGPR to increase the growth of chili plants. The experiments were divided into two batches. The first batch was conducted in the laboratory to evaluate the characteristics of B. subtilis (as biocontrol) and PGPR (phosphate solubility, producing IAA and nitrogen). The second batch was conducted in the field in Rempoah Village, Baturraden Regency, Banyumas District, with 5 treatments and 6 replications. Parameters observed were inhibition percentage to Colletotrichum spp., disease intensity, the component of PGPR, plant growth of chili, and phatosystem. The results showed that B209, B211, and B298 isolates inhibited the growth of Colletotrichum spp, with the highest inhibition percentage on B298. B209, B211, and B298 have characteristics as PGPR, i.e. the ability to soluble phosphate, to produce IAA and nitrogen. The ability of B298 to promote plant growth was shown by the increase of plant height, leaf number, plant dry mass, and dry root mass (38.0%, 54.7%, 61.7%, 61.8%, respectively). B298 and B211 could increase the fresh crop mass (41.2% and 37.1%) and fresh root mass (36.4% and 34.4%). B298 and B209 were similar in increasing the root length (25.2%). Root volume could be increased by 33.3% by applying B211 isolate. B209 was the best isolate to reduce anthracnose up to 80.36%.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 438A-438
Author(s):  
Marc van Iersel

Auxins are commonly used to induce root formation during in-vitro culture of higher plants. Because transplanting is often accompanied by root damage and loss of small roots, auxins also could be beneficial in minimizing transplant shock. Vinca (Cataranthus rosea) seeds were germinated in a peat-lite growing mix and transplanted into pots (55 mL) filled with a diatomaceous earth (Isolite) 10 days after planting. Pots were then placed in a tray containing 62.5 mL of auxin solution per pot. Two different auxins [indole-acetic acid (IAA) and naphtylacetic acid (NAA)] were applied at rates ranging from 0.01 to 100 mg/L. Post-transplant growth was slow, possibly because of Fe+2-deficiencies. Both IAA (1–10 mg/L) and NAA (0.01–10 mg/L) significantly increased post-transplant root and shoot growth. As expected, NAA was effective at much lower concentrations than IAA. At 63 days after transplant, shoot dry mass of plants treated with 0.1 mg NAA/L was four times that of control plants, while 10 mg IAA/L increased shoot dry mass three-fold. High rates of both IAA (100 mg/L) and NAA (10–100 mg/L) were less effective. The highest NAA rate (100 mg/L) was phytotoxic, resulting in very poor growth and death of many plants. These results suggest that auxins may be a valuable tool in reducing transplant shock and improving plant establishment.


1969 ◽  
Vol 20 (5) ◽  
pp. 819 ◽  
Author(s):  
CM Francis ◽  
AC Devitt

Seventy-five cultivars were used to determine the effect of waterlogging on the yield and isoflavone content of three subspecies of Trifolium subterraneum L. The 21-day flooding treatment affected root growth more than shoot growth. The relative tolerance of the subspecies to waterlogging was yanninicum > subterraneum > brachycalycinurn. These results were in keeping with ecological evidence. The flooding treatment resulted in a general increase in leaf isoflavone concentrations. As with plant growth there was a significant subspecies x waterlogging interaction, the relative increase in isoflavone concentration being least for subsp. yanninicum.


HortScience ◽  
2020 ◽  
Vol 55 (6) ◽  
pp. 787-794
Author(s):  
Jesús Gallegos ◽  
Juan E. Álvaro ◽  
Miguel Urrestarazu

The response of root growth in containers has been studied in recent decades. The objective was to evaluate the effect of four types of containers on root and shoot growth. The containers were two shapes, round and square, and in some containers, internal vertical walls (IVWs) were placed that increased the internal container surface area with two substrates: perlite and coir fiber. Seedlings of cucumber, pepper, and tomato were transplanted. Two experiments were performed: vegetative growth and drought stress by partial decapitation and a period without fertigation. After decapitation, preexisting and new leaf area, dry biomass or the leaves, and stem were measured. The results revealed that the type of container had no effect, nor were there significant differences between substrates. The containers with IVWs exhibited an increase in biomass and the root surface. The total contact surface with the substrate of the four container types was closely related to the recorded plant growth. Thus, IVWs not only decrease mechanical problems of roots by preventing spiralling but also favor the production of biomass in vegetable plants and substantially increase the root, enabling the plants to manage water deficit and potentially improve posttransplant stress.


HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 603F-603
Author(s):  
Bielinski M. Santos ◽  
Jose P. Morales-Payan

The effect of varying calcium (Ca), magnesium (Mg), boron (B), and molybdenum (Mo) rates on the growth of young `Cartagena Ombligua' papaya (Carica papaya) plants was studied in experiments conducted in the Dominican Republic. Rates of 0, 3, 6, 9, and 12 g Ca; 0, 0.85, 1.7, 2.55, and 3.4 g Mg; 0, 20, 40, 60, and 80 mg B; and 0, 0.05 0.1,0.15 and 0.2 mg Mo per plant were applied to the soil 20 days after transplanting. Ca did not stimulate plant growth, but instead was toxic at rates of 9-12 g per plant. Mg fertilization significantly stimulated root growth (Y = 2.35 + 0.48X, r2 = 0.95), but not shoot growth. Mo applications decreased plant growth, whereas B enhanced overall plant growth (Y = 10.64 + 70.5X, r2 = 0.96).


1999 ◽  
Vol 9 (2) ◽  
pp. 206-209 ◽  
Author(s):  
Kimberly A. Klock-Moore ◽  
Timothy K. Broschat

Growth of hand-watered and subirrigated `Ultra Red' petunia (Petunia ×hybrida Hort.) and `Super Elfin Violet' impatiens (Impatiens wallerana Hook.f.) plants were compared when grown using four controlled-release fertilizer rates and four fertilizer placements in the pot. Furthermore, the amount of NO3-N leached from hand-watered plants was compared to amount captured by subirrigation system. Before planting, Osmocote (14N-6.2P-11.6K) (4 month release) was either topdressed (TD), layered in the middle of the pot (M), layered at the bottom of the pot (B), or incorporated throughout (I) the substrate at 1.25, 2.5, 5.0, or 7.5 kg·m-3 (oz/ft3). Shoot dry mass of petunia plants was similar between both irrigation systems and among the four fertilizer placements. Subirrigated petunias fertilized with 2.5 kg·m-3 had similar shoot dry mass as hand-watered petunias fertilized with 7.5 kg·m-3. Hand-watered impatiens had greater shoot dry mass than subirrigated impatiens. Hand-watered impatiens also had greater shoot dry mass in pots with fertilizer at TD, M, or I than with fertilizer at B, but no difference in growth was observed in subirrigated impatiens among the different fertilizer placements. Finally, significantly more NO3-N was leached from hand-watered plants than was captured with the subirrigation systems.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 571b-571
Author(s):  
Robert E. Shar

Plant water deficits usually result in severe inhibition of shoot growth, while root growth is less inhibited or even promoted. Recent advances in understanding the physiology of the differential responses of root and shoot growth to low water potentials will be reviewed. While it might be readily accepted that hormones arc important in transducing environmental conditions into growth responses, there is surprisingly little definitive evidence for the role of any hormone in regulating plant growth in soils of low water potential. Using maize seedlings as a model system, the increase in ABA that accompanies plant water deficits has been shown to be required for root growth maintenance, and also to play a role in shoot growth inhibition. The action of ABA in root growth maintenance appears to involve regulation of ethylene synthesis and/or sensitivity, while the mechanism of shoot growth inhibition is not known. Evidence that ABA acts as a root `signal controlling shoot growth in drying soil will also be considered. The importance of osmotic adjustment as a mechanism of growth maintenance at low water potentials has been questioned by suggestions that solute accumulation may be merely a consequence of stress-induced growth inhibition. Recent studies will be discussed which do not support this idea, and suggest that the response may be useful for crop improvement.


Sign in / Sign up

Export Citation Format

Share Document