scholarly journals Bedding Plant Growth in Greenhouse Waste and Biosolid Compost

1999 ◽  
Vol 9 (2) ◽  
pp. 210-213 ◽  
Author(s):  
Kimberly A. Klock-Moore

Growth of `Oasis Scarlet' begonia (Begonia ×semperflorens-cultorum Hort.) and `Super Elfin Violet' impatiens (Impatiens wallerana Hook. f.) was compared in substrates containing compost made from used greenhouse substrates and yard trimmings (GHC) and in compost made from biosolids and yard trimmings (SYT). Treatments consisted of 100% compost (GHC or SYT) or compost combined with control substrate components at 60%, 30%, or 0%. Substrates containing SYT compost produced significantly larger begonia and impatiens plants than substrates containing GHC compost. Higher initial substrate nutrient concentrations in substrates containing SYT probably prompted increased begonia and impatiens growth because substrates containing SYT compost had significantly higher initial soluble salt, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) concentrations than substrates containing GHC compost. Begonia and impatiens shoot dry mass and size linearly increased as the percentage of SYT compost in the substrate increased from 0% to 100%. However, no difference in begonia or impatiens growth was observed among the different percentages of GHC compost. Initial soluble salt, N, P, K, Ca, and Mg concentrations also linearly increased as the percentage of SYT increased while only initial P, K, and Ca concentrations linearly increased as the percentage of GHC increased.

1999 ◽  
Vol 9 (2) ◽  
pp. 206-209 ◽  
Author(s):  
Kimberly A. Klock-Moore ◽  
Timothy K. Broschat

Growth of hand-watered and subirrigated `Ultra Red' petunia (Petunia ×hybrida Hort.) and `Super Elfin Violet' impatiens (Impatiens wallerana Hook.f.) plants were compared when grown using four controlled-release fertilizer rates and four fertilizer placements in the pot. Furthermore, the amount of NO3-N leached from hand-watered plants was compared to amount captured by subirrigation system. Before planting, Osmocote (14N-6.2P-11.6K) (4 month release) was either topdressed (TD), layered in the middle of the pot (M), layered at the bottom of the pot (B), or incorporated throughout (I) the substrate at 1.25, 2.5, 5.0, or 7.5 kg·m-3 (oz/ft3). Shoot dry mass of petunia plants was similar between both irrigation systems and among the four fertilizer placements. Subirrigated petunias fertilized with 2.5 kg·m-3 had similar shoot dry mass as hand-watered petunias fertilized with 7.5 kg·m-3. Hand-watered impatiens had greater shoot dry mass than subirrigated impatiens. Hand-watered impatiens also had greater shoot dry mass in pots with fertilizer at TD, M, or I than with fertilizer at B, but no difference in growth was observed in subirrigated impatiens among the different fertilizer placements. Finally, significantly more NO3-N was leached from hand-watered plants than was captured with the subirrigation systems.


1998 ◽  
Vol 8 (1) ◽  
pp. 45-47
Author(s):  
Marc van Iersel

Various growth stimulators have been reported to improve plant growth. Some of these are formulated to improve root growth, which would be particularly beneficial for reestablishing transplants. Three commercially available plant growth stimulators—PGR IV (MicroFlo, Lakeland, Fla.), Roots2 (Lisa Products Corp., Independence, Mo.), and Up-Start (The Solaris Group, San Ramon, Calif.)—were tested to quantify their effect on post-transplant growth of petunia (Petunia × hybrida Hort. Vilm.-Andr.) and impatiens (Impatiens wallerana Hook.f.) seedlings and to assess their value for the greenhouse industry. Seedlings were transplanted from plug flats into larger 5.6-fl oz (166-cm3) containers and treated with 1.1 fl oz (31 mL) of growth stimulator per plant (22 fl oz/ft2). Applications were made immediately after transplant. None of the treatments affected root mass at any time. Up-Start (2 fl oz/gal) increased final shoot dry mass by ≈20% compared to the control plants. The increase in shoot growth by Up-Start most likely is caused by the fertilizer it contains. Up-Start also increased flowering of petunia from 34 to 40 days after transplant. PGR IV (0.5 fl oz/gal) and Roots2 (1.28 fl oz/gal) did not affect dry mass of the plants. PGR IV increased the number of flowers of petunia and impatiens, but this effect occurred well after the plants were marketable. Roots2 caused a small delay in early flowering and an increase in late flowering of petunia but had no effect on flowering of impatiens. Since the effects of the growth stimulators was either due their fertilizer content (Up-Start) or occurred after the plants would have been sold (PGR IV, Roots2), none of the growth stimulators appears to be beneficial for bedding plant producers.


1997 ◽  
Vol 15 (3) ◽  
pp. 135-137
Author(s):  
Kimberly A. Klock

Abstract Bedding plant growers have the opportunity to utilize composted urban waste as a component in bedding plant media. Growth of Dianthus chinensis L. (dianthus) and Petunia × hybrida Hort. (petunia) was evaluated in media with 0, 30, 60, or 100% compost made from biosolids and yard trimmings. Dianthus and petunia shoot dry mass, size, and height increased as the percentage of compost in the medium increased from 0 to 60% but decreased at 100% compost. However, dianthus and petunia growth was greater in 100% than 0% compost. Initial nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and soluble salt concentrations linearly increased as the percentage of compost in the medium increased from 0 to 100%. Soluble salt concentrations in 100% compost were 28× greater than in 0% compost and 2× greater than in 30 and 60% compost. Media containing compost made from biosolids and yard trimmings produced larger dianthus and petunia plants than plants grown in peat, vermiculite, perlite medium. The best dianthus and petunia growth was in the medium containing 60% compost.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 523b-523 ◽  
Author(s):  
Erin James ◽  
Marc van Iersel

The quantity and quality of available water in the Southeastern United States continues to decline as demands on limited resources increase. Growers will soon be forced to comply with legal limitations on water consumption and limits on nutrient runoff from their operations. A lack of information on standard growing practices using alternative irrigation systems such as ebb and flow is hindering their acceptance and implementation. We are currently conducting a series of experiments to establish basic growing guidelines for the use of ebb and flow in the greenhouse in bedding plant production. In the third of these experiments, Petunia × hybrida Hort. Vilm.-Andr. `Blue Frost' and Begonia × hiemalis Fotsch. `Ambassador Scarlet' were grown for 5 weeks on ebb and flow tables with fertigation solutions (225 ppm N) containing three different levels of phosphorus (0, 50, and 100 ppm). Three soilless media were also used, which varied in their percentage content of vermiculite, perlite, pine bark and coconut coir. For both the begonias and petunias dry mass of the shoot was greatest in plants grown with higher levels of phosphorus. In comparison to plants grown with 0 ppm phosphorous, petunias and begonias grown with 50 or 100 ppm P were 44% and 25% greater in mass, respectively. However, begonias had 38% more flowers when fertigated with the higher levels of phosphorous while petunias flowered earlier with 0 ppm P fertigation solution. The electrical conductivity of the media did not change significantly over the course of the growing period, but the pH dropped by an average of 1 over the same time interval.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 474d-474
Author(s):  
N.K. Damayanthi Ranwala ◽  
Dennis R. Decoteau

This study was conducted to evaluate the spectral properties of various colored plastic color mulches and to determine the effects of upwardly reflected light from the mulch surfaces on watermelon plant growth when differences in root zone temperatures are minimized. Two-week-old watermelon plants were grown with black mulch, red-painted mulch, SRM-Red mulch (Sonoco, Inc., Harstville, S.C.), and white mulch. Total light reflection (58 μmol·m–2·s–1 in 400–700 nm) and red: far-red (R:FR = 0.44) of reflected light were lower in black mulch and highest in white mulch (634 and 0.92, respectively). Both black mulch and white mulch had same blue:red (B:R = 0.6) while white mulch had higher B:FR (0.58) in reflected light compared to black mulch (0.26). Reflective properties of red mulches were somewhat similar, and R:FR, B:R, and B:FR were 0.8, 0.2, and 0.18, respectively. However, SRM-Red mulch had highest total light (355 μmol·m–2·s–1 in 400–700 nm) transmission through the mulch, and R:FR, B:R, and B:FR were 0.84, 0.28, and 0.23, respectively. Light transmission through the other mulches was nonsignificant. Watermelon plants grown with black mulch and red mulches had higher internode lengths compared to white mulch after 20 days. Further, plants grown under black had significant higher petiole elongation accompanied with higher dry mass partitioning to petioles, and lower partitioning to roots, stems, and leaves. There was no effects of surface mulch color on total plant dry mass or photosynthesis although plants with black had higher transpiration rate. This suggests the differential regulation of dry mass partitioning among plant parts due to mulch color. The similar plant responses with black mulch and white mulch to plants treated with FR or R light at the end of photoperiod implies the involvement of phytochrome regulation of growth due to mulch surface color.


2017 ◽  
Vol 35 (1) ◽  
pp. 103-110 ◽  
Author(s):  
Roberto BF Branco ◽  
Sally F Blat ◽  
Tais GS Gimenes ◽  
Rodrigo HD Nowaki ◽  
Humberto S Araújo ◽  
...  

ABSTRACT The production of horticultural crops in no-tillage and in rotation with cover crops reduces the dependency in nitrogen fertilizer, due to increased soil organic matter and by biological fixation performed by legumes. Thus, the aim of this work was to study rates of nitrogen fertilization and cover crops in the agronomic performance of tomato and broccoli grown under no-tillage. The experiment was conducted in a split plot design with four replications. Treatments consisted of cover crops, sunn hemp and millet, and four rates of nitrogen fertilization (0, 50, 100 and 200 kg/ha of nitrogen), for both the tomato and broccoli crops. All soil management was performed in no-tillage. For tomato crops we evaluated the plant growth, the nitrate concentration of sprouts and fruits and yield of commercial and non commercial fruits. For broccoli we evaluated plant growth and yield. There was an interaction effect between cover crop and nitrogen rates to tomato growth measured at 100 days after transplanting, for plant height, number of fruit bunches, dry mass of leaves and diameter of the stalk. The tomato commercial fruit number and yield showed maximum values with 137 and 134 kg/ha of N respectively, on the sunn hemp straw. The nitrate concentration of the tomato sprouts was linearly increasing with the increase of nitrogen rates, when grown on the millet straw. For broccoli production, the maximum fresh mass of commercial inflorescence was with 96 kg/ha of N, when grown on the millet straw.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Praveen Kumar Goteti ◽  
Leo Daniel Amalraj Emmanuel ◽  
Suseelendra Desai ◽  
Mir Hassan Ahmed Shaik

Zinc (Zn) is one of the essential micronutrients required for optimum plant growth. Substantial quantity of applied inorganic zinc in soil is converted into unavailable form. Zinc solubilising bacteria are potential alternates for zinc supplement. Among 10 strains screened for Zn solubilisation, P29, P33, and B40 produced 22.0 mm clear haloes on solid medium amended with ZnCO3. Similarly, P17 and B40 showed 31.0 mm zone in ZnO incorporated medium. P29 and B40 showed significant release of Zn in broth amended with ZnCO3(17 and 16.8 ppm) and ZnO (18 and 17 ppm), respectively. The pH of the broth was almost acidic in all the cases ranging from 3.9 to 6.1 in ZnCO3and from 4.1 to 6.4 in ZnO added medium. Short term pot culture experiment with maize revealed that seed bacterization with P29 @ 10 g·kg−1significantly enhanced total dry mass (12.96 g) and uptake of N (2.268%), K (2.0%), Mn (60 ppm), and Zn (278.8 ppm).


1999 ◽  
Vol 50 (2) ◽  
pp. 217 ◽  
Author(s):  
D. O. Huett ◽  
S. C. Morris

Nutrient leaching loss, plant growth, and nutrient uptake of 4-week (transplanting to sale) ground-cover species were investigated under a range of leaching conditions and with different sources of a controlled- release fertiliser (CRF), Osmocote NPK (3–4 month) (Osm). Osm was applied pre-planting at a rate equivalent to 800 g N/m3 to pots containing sand, and composted pinebark and hardwood sawdust medium that had received nutrient amendment during formulation. Two experiments were conducted in a glasshouse over summer–autumn where irrigation treatments produced defined leachate volumes. In Expt 1, leachate volumes of <5, 50, and 200 mL every 2 days each received an additional single heavy leaching event of 400 mL after 1, 2, or 3 weeks. In Expt 2, the 3 leachate volumes were each fertilised with new Osm (a newly purchased Osm) or old Osm (a 2-year-old source), where both of these sources contained 0.5–1.5% visibly damaged prills; and damaged Osm, where damaged prills were used exclusively. In both experiments, increasing leachate volume increased (P < 0.001) leaching of N (nitrate + ammonium), P, K, Ca, and Mg. In Expt 1, leaching was highest (P < 0.01) when the heavy leaching event occurred after 2 or 3 weeks for N and after 2 weeks for P. When damaged Osm was used, N, P, and K loss was 3–15 times higher (P < 0.001) than from new and old Osm (98.5–99.5% undamaged). The highest leaching loss of N, P, K, Ca, and Mg occurred in the first week after potting up, with damaged prills at highest leaching volume. Increasing leachate volume (in the presence of a heavy leaching event) reduced (P < 0.001) electrical conductivity (EC) of potting medium after 4 weeks from 1.02 to 0.54 dS/m. Damaged prills reduced (P < 0.001) EC at the high leachate volume in relation to new Osm (2.38 v. 0.29 dS/m). Treatments that increased (P < 0.05) nutrient leaching generally reduced (P < 0.05) nutrient concentrations in shoots and depressed the growth of some plant species. Shoot growth of 2 of 5 species was reduced (P < 0.001) at the highest leachate volume with an additional heavy leaching event in Week 1 or 2, and root growth of all but the slowest growing species declined with increasing leachate volume. Damaged prills reduced (P < 0.001) shoot growth of 2 of the 5 ground-cover species. This study demonstrated that excessive leaching and the use of damaged prills for containerised nursery plants fertilised with CRF results in high nutrient loss, low residual nutrient content, reduced nutrient uptake in shoots, and reduced shoot growth of some species.


1974 ◽  
Vol 14 (66) ◽  
pp. 112 ◽  
Author(s):  
DW Turner ◽  
B Barkus

At Alstonville, New South Wales, leaf position had a greater effect than season on the nutrient concentrations of N, P, K, Ca, Mn, Cu, and Zn in the laminae of Williams bananas growing on a krasnozem soil and sampled over a 4-year period. However, season was more important for Mg. The effect of stage of plant growth was significant but much smaller than the other influences. When sampling for leaf analysis, leaf position and plant age can be standardised, but a major problem in this investigation was unpredictable, significant changes in nutrient composition from one sampling date to another. If these results are true for other soils. the data do not allow critical levels to be applied.


2015 ◽  
Vol 33 (2) ◽  
pp. 230-235 ◽  
Author(s):  
Cristina B Lima ◽  
Ana C Boaventura ◽  
Marli M Gomes

We aimed to establish the period of time required for seedlings formation, as well as to evaluate the effect of substrates and plant growth regulators in cuttings of L. alba. Three experiments were performed, with statistical designs chosen according to each test objectives. Rooting (%), shoot height (cm), longest root length (cm), leaves number, fresh and dry matter masses (g), were analyzed. The absolute rate of shoot and root system growth, together with the relationship between dry mass of roots and shoots were efficient in predicting the period of greatest speed and accumulation of organic matter in plants. The plant growth regulators favored the vegetative performance of seedlings, with better development 30 days after the cuttings containing mineral fertilizers, vermicompost, clay soil and sand commercially known as 'medium sand'.


Sign in / Sign up

Export Citation Format

Share Document