scholarly journals Differences in Bedding Plant Growth and Nitrate Loss with a Controlled-release Fertilizer and Two Irrigation Systems

1999 ◽  
Vol 9 (2) ◽  
pp. 206-209 ◽  
Author(s):  
Kimberly A. Klock-Moore ◽  
Timothy K. Broschat

Growth of hand-watered and subirrigated `Ultra Red' petunia (Petunia ×hybrida Hort.) and `Super Elfin Violet' impatiens (Impatiens wallerana Hook.f.) plants were compared when grown using four controlled-release fertilizer rates and four fertilizer placements in the pot. Furthermore, the amount of NO3-N leached from hand-watered plants was compared to amount captured by subirrigation system. Before planting, Osmocote (14N-6.2P-11.6K) (4 month release) was either topdressed (TD), layered in the middle of the pot (M), layered at the bottom of the pot (B), or incorporated throughout (I) the substrate at 1.25, 2.5, 5.0, or 7.5 kg·m-3 (oz/ft3). Shoot dry mass of petunia plants was similar between both irrigation systems and among the four fertilizer placements. Subirrigated petunias fertilized with 2.5 kg·m-3 had similar shoot dry mass as hand-watered petunias fertilized with 7.5 kg·m-3. Hand-watered impatiens had greater shoot dry mass than subirrigated impatiens. Hand-watered impatiens also had greater shoot dry mass in pots with fertilizer at TD, M, or I than with fertilizer at B, but no difference in growth was observed in subirrigated impatiens among the different fertilizer placements. Finally, significantly more NO3-N was leached from hand-watered plants than was captured with the subirrigation systems.

1999 ◽  
Vol 9 (2) ◽  
pp. 210-213 ◽  
Author(s):  
Kimberly A. Klock-Moore

Growth of `Oasis Scarlet' begonia (Begonia ×semperflorens-cultorum Hort.) and `Super Elfin Violet' impatiens (Impatiens wallerana Hook. f.) was compared in substrates containing compost made from used greenhouse substrates and yard trimmings (GHC) and in compost made from biosolids and yard trimmings (SYT). Treatments consisted of 100% compost (GHC or SYT) or compost combined with control substrate components at 60%, 30%, or 0%. Substrates containing SYT compost produced significantly larger begonia and impatiens plants than substrates containing GHC compost. Higher initial substrate nutrient concentrations in substrates containing SYT probably prompted increased begonia and impatiens growth because substrates containing SYT compost had significantly higher initial soluble salt, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) concentrations than substrates containing GHC compost. Begonia and impatiens shoot dry mass and size linearly increased as the percentage of SYT compost in the substrate increased from 0% to 100%. However, no difference in begonia or impatiens growth was observed among the different percentages of GHC compost. Initial soluble salt, N, P, K, Ca, and Mg concentrations also linearly increased as the percentage of SYT increased while only initial P, K, and Ca concentrations linearly increased as the percentage of GHC increased.


HortScience ◽  
2001 ◽  
Vol 36 (6) ◽  
pp. 1022-1026 ◽  
Author(s):  
Jaime K. Morvant ◽  
John M. Dole ◽  
Janet C. Cole

Pelargonium ×hortorum Bailey `Pinto Red' plants were fertilized with equal amounts of N, P, and K derived from: 1) 100% constant liquid fertilization (CLF); 2) 50% CLF plus 50% controlled-release fertilizer (CRF); or 3) 100% CRF per pot and irrigated using hand (HD), microtube (MT), ebb-and-flow (EF), or capillary mat (CM) irrigation systems. The treatment receiving 100% CRF produced greater total dry weights, and released lower concentrations of NO3-N, NH4-N, and PO4-P in the run-off than the 100% CLF treatment. The percentage of N lost as run-off was greatly reduced with the use of CRF. MT irrigation produced the greatest plant growth and HD irrigation produced the least. The EF system was the most water efficient, with only 4.7% of water lost as run-off. Combining the water-efficient EF system with the nutrient-efficient CRF produced the greatest percentage of N retained by plants and medium (90.7) and the lowest percentage of N lost in the run-off (1.7).


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 199 ◽  
Author(s):  
Giampaolo Zanin ◽  
Carmelo Maucieri ◽  
Nicola Dal Ferro ◽  
Lucia Bortolini ◽  
Maurizio Borin

In bioretention ponds proposed to manage urban runoff, floating elements with anchored macrophytes plants improve nutrient and pollutants removal and provide aesthetic benefits. To prompt the establishment and initial growth of plants in floating elements with substrate, the application of Osmocote (a controlled-release fertilizer) in tablet form was proposed. In a confined environment, eight treatments were compared, combining two substrates (peat and zeolite at a ratio of 1:1 or 2:1 v/v), two levels of fertilization (without or with addition of Osmocote plus tablets; 5 g plant−1), and the presence or absence of Mentha aquatica L. plants. For about 16 weeks, the amount and quality of water, along with plant growth and nutrient content, were monitored. The results showed better plant growth when Osmocote was supplied, with no effect of the substrate. The presence of the plant produced the almost total uptake of the nutrients contained in the tap water and released by the fertilizer. This indicates that the use of a controlled release fertilizer can improve plant growth without compromising water quality, hence being a valuable solution to promote plant establishment usable as routine practice when a bioretention basin is vegetated with floating elements with substrate.


HortScience ◽  
2014 ◽  
Vol 49 (2) ◽  
pp. 152-159 ◽  
Author(s):  
Christopher J. Currey ◽  
Roberto G. Lopez

Our objectives were to quantify the effects of controlled-release fertilizer (CRF) on the growth, morphology, and tissue nutrient concentration of annual bedding plants during propagation. Unrooted cuttings of Angelonia angustifolia ‘AngelFace White’ and ‘Sundancer Pink’, Impatiens hawkeri ‘Celebrette Apricot’ and ‘Celebrette Rose Hot’, Nemesia fruticans ‘Bluebird’ and ‘Raspberry Sachet’, Pelargonium ×hortorum ‘Savannah Red’, and Petunia ×hybrida ‘Cascadia Marshmallow Pink’ and ‘Suncatcher Yellow’ were received from a commercial propagator. Cuttings were immediately stuck individually in cells containing soilless substrate supplemented with 0, 3, 6, 12, or 24 g·L−1 CRF (Osmocote Plus 15–3.9–10 3–4 month) and placed under clear mist water or cuttings were stuck in substrate containing no CRF and fertilized with water-soluble fertilizer beginning immediately after placing cuttings into propagation. Shoot dry mass of cuttings grown in substrates containing up to 12 or 24 g·L−1 CRF increased by up to 150% for some taxa compared with unfertilized cuttings. Incorporating CRFs into propagation substrates increased the concentration of nitrogen (N), phosphorus (P), and potassium (K) in tissues by up to 103%, 42%, and 137%, respectively, compared with unfertilized cuttings. Additionally, tissue nutrient concentrations for cuttings fertilized with 6 g·L−1 CRF or greater were similar to cuttings receiving water-soluble fertilizer (WSF). When the impact of CRF on growth and nutrient concentrations are taken together, our results indicate that CRF is a fertilization application technology that holds promise for use during propagation of herbaceous stem-tip cuttings.


HortScience ◽  
2013 ◽  
Vol 48 (5) ◽  
pp. 556-562 ◽  
Author(s):  
Diane M. Camberato ◽  
James J. Camberato ◽  
Roberto G. Lopez

Four complete water-soluble fertilizer (WSF) formulations including micronutrients applied at 200 mg·L−1 nitrogen (N) at each irrigation [Peters Excel (21N–2.2P–16.5K), Daniels (10N–1.8P–2.5K), Peters Professional (15N–1.3P–20.8K), and Jack’s Professional (20N–1.3P–15.7K)] were compared with two controlled-release fertilizer (CRF) products (also containing micronutrients) substrate incorporated at transplant at a rate of 3000 g·m−3 of substrate [Osmocote Plus (15N–4P–9.9K, 90 to 120 days longevity at 21 °C) and Osmocote Bloom (12N–3.1P–15K, 60 to 90 days longevity at 21 °C)] in the greenhouse production of four commonly produced bedding plant species with high alkalinity irrigation water (pH 7.1, 280 mg·L−1 CaCO3 equivalent). Species included Argyranthemum frutescens (L.) Sch. Bip. ‘Madeira Cherry Red’ and iron-inefficient Calibrachoa Cerv. hybrid ‘Cabaret Pink Hot’, Diascia barberae Hook. f. ‘Wink Coral’, and Sutera cordata Roth ‘Abunda Giant White’. Additional treatments included a combination of 100 mg·L−1 Excel and 2100 g·m−3 Osmocote Plus and an Osmocote Plus treatment irrigated with reduced alkalinity water (acidified to pH 6.3, 92 mg·L−1 CaCO3 equivalent). Bedding plants were evaluated at the end of a finish or market stage (3 or 5 weeks depending on species) for shoot dry mass (SDM) and root dry mass (RDM), tissue nutrient concentrations, and visual quality rating (0 to 4). At 3 weeks, there were no significant differences in SDM and RDM between fertilizer treatments for any of the four species. Shoot dry mass significantly increased at 5 weeks in the WSF and combination treatments over the three CRF only treatments for Argyranthemum and over the non-acidified Osmocote Plus treatment only for Calibrachoa. At finish, 3 weeks for Sutera and Diascia and 5 weeks for Argyranthemum and Calibrachoa, visual quality rating for all species was lowest when using Osmocote Plus with or without acidified irrigation water compared with the WSF treatments, except the Daniels treatment in Argyranthemum, which also resulted in a low visual quality rating. Leaf tissue N for all species and phosphorus (P) for all except Diascia were below the recommended range for bedding plant crops in the CRF treatments, which was reflected by the lower substrate electrical conductivity (EC) for the CRF alone and combination treatments. Leaf tissue N and P were related to visual quality rating for all species, leaf tissue potassium (K) for Argyranthemum and Calibrachoa only, and leaf tissue iron (Fe) for Diascia only.


FLORESTA ◽  
2018 ◽  
Vol 48 (3) ◽  
pp. 303 ◽  
Author(s):  
Thuanny Lins Monteiro Rosa ◽  
Renan Baptista Jordaim ◽  
Rodrigo Sobreira Alexandre ◽  
Caroline Palacio de Araujo ◽  
Fabrício Gomes Gonçalves ◽  
...  

Moringa oleifera presents important medicinal properties, and its seeds are used to treat water for human consumption and wastewater. The aim of the present study was to analyze the initial growth of M. oleifera seedlings in enriched commercial substrate with differing doses of controlled release fertilizer. The experimental was designed in randomized blocks, with four repetitions of 16 seedlings each. The treatment used doses of controlled release fertilizer, with 0; 2; 4; 6; and 8 kg m-3 of commercial substrate. A hundred days after installing the experiment, the following characteristics were analyzed: height of the aerial part; diameter of the root collar; length; volume; and dry mass of the roots and aerial part. Additionally, the relation between the height of the aerial part and the diameter of the root collar and the Dickson quality index (DQI) were determined. The data was submitted to analysis of variance and to the Shapiro-Wilk test to verify the normality and regression. Controlled release fertilizer at a dose of 5.37 kg m-3 of substrate is recommended for M. oleifera seedling production.


2004 ◽  
Vol 14 (4) ◽  
pp. 474-478 ◽  
Author(s):  
Kimberly K. Moore

Growth of `Aladdin Peach Morn' petunia (Petunia × hybrida) and `Accent White' impatiens (Impatiens wallerana) was compared in substrates containing 0%, 30%, 60%, or 100% compost made from biosolids and yard trimmings and fertilized with Nutricote Total 13-13-13 (13N-5.7P-10.8K) Types 70, 100, and 140 incorporated at rates of 0.5x, 1x, 2x, or 3x (x = standard application rate for a medium-feeding crop). Petunia shoot dry weight of plants fertilized with Type 70 incorporated at 0.5x increased as the percentage of compost in the substrate increased from 0% to 60% and then decreased, while shoot dry weight of plants fertilized with Type 70 incorporated at 1x, 2x, or 3x increased as the percentage of compost increased from 0% to 30% and then decreased. Impatiens shoot dry weight of plants fertilized with Type 70 incorporated at 0.5x and 1x also increased as the percentage of compost increased from 0% to 30% and then decreased, while shoot dry weight of plants fertilized at 2x and 3x decreased as the percentage of compost increased from 0% to 100%. Both petunia and impatiens shoot dry weight of plants fertilized with Type 100 and Type 140 incorporated at 0.5x, 1x, 2x, or 3x increased as the percentage of compost increased from 0% to 60% and then decreased.


HortScience ◽  
2020 ◽  
Vol 55 (12) ◽  
pp. 1956-1962
Author(s):  
Ji-Jhong Chen ◽  
Heidi Kratsch ◽  
Jeanette Norton ◽  
Youping Sun ◽  
Larry Rupp

Shepherdia ×utahensis ‘Torrey’ (‘Torrey’ hybrid buffaloberry) is an actinorhizal plant that can fix atmospheric nitrogen (N2) in symbiotic root nodules with Frankia. Actinorhizal plants with N2-fixing capacity are valuable in sustainable nursery production and urban landscape use. However, whether nodule formation occurs in S. ×utahensis ‘Torrey’ and its interaction with nitrogen (N) fertilization remain largely unknown. Increased mineral N in fertilizer or nutrient solution might inhibit nodulation and lead to excessive N leaching. In this study, S. ×utahensis ‘Torrey’ plants inoculated with soils containing Frankia were irrigated with an N-free nutrient solution with or without added 2 mm ammonium nitrate (NH4NO3) or with 0.0 to 8.4 g·L−1 controlled-release fertilizer (CRF; 15N–3.9P–10K) to study nodulation and plant morphological and physiological responses. The performance of inoculated plants treated with various amounts of CRF was compared with uninoculated plants treated with the manufacturer’s prescribed rate. Plant growth, gas exchange parameters, and shoot N content increased quadratically or linearly along with increasing CRF application rates (all P < 0.01). No parameters increased significantly at CRF doses greater than 2.1 g·L−1. Furthermore, the number of nodules per plant decreased quadratically (P = 0.0001) with increasing CRF application rates and nodule formation were completely inhibited at 2.9 g·L−1 CRF or by NH4NO3 at 2 mm. According to our results, nodulation of S. ×utahensis ‘Torrey’ was sensitive to N in the nutrient solution or in increasing CRF levels. Furthermore, plant growth, number of shoots, leaf area, leaf dry weight, stem dry weight, root dry weight, and N content of shoots of inoculated S. ×utahensis ‘Torrey’ plants treated with 2.1 g·L−1 CRF were similar to those of uninoculated plants treated with the manufacturer’s prescribed rate. Our results show that S. ×utahensis ‘Torrey’ plants inoculated with soil containing Frankia need less CRF than the prescribed rate to maintain plant quality, promote nodulation for N2 fixation, and reduce N leaching.


2006 ◽  
Vol 41 (12) ◽  
pp. 1787-1792 ◽  
Author(s):  
Julio Cezar Silveira Nunes ◽  
Paulo Cezar Rezende Fontes ◽  
Eduardo Fontes Araújo ◽  
Carlos Sediyama

The objective of this study was to evaluate potato plant growth and macronutrient uptake, as affected by soil tillage methods, in sprinkle and drip irrigated experiments. Eight treatments were set: T1, no tillage, except for furrowing before planting; T2, one subsoiling (SS); T3, twice rotary hoeing (RH); T4, one disc plowing (DP) + twice disc harrow leveling (DL); T5, 1DP + 2DL + 1RH; T6, 1DP + 2DL + 2RH; T7, 1SS + T6; T8, one moldboard plowing (MP) + 2DL. Treatments were arranged in a randomized block design with four replications. In both irrigation systems, plants presented higher emergence velocity index (EVI), when the soil was not tillaged, and the EVI was inversely related to the maximum tuber dry mass production. In both experiments, a functional direct relationship was found between the leaf area index and maximum tuber dry mass yield. The growth of plant organs (tuber, leaf, stem and root) and the macronutrient (N, P, K, Ca and Mg) contents in potato plant responded positively to a deeper soil revolving caused by plowing, especially with moldboard plow.


Sign in / Sign up

Export Citation Format

Share Document