scholarly journals Genetics of Length of Dormancy Period in Malus Vegetative Buds

1991 ◽  
Vol 116 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Roberto Hauagge ◽  
James N. Cummins

In a study of chilling requirement in Malus, broad-sense heritability estimates for the length of vegetative bud dormancy in 43 clones growing under simulated subtropical winter conditions were 0.76 ± 0.04 in 1986 and 0.81 ± 0.04 in 1987. Narrow-sense heritability estimates were 0.66 ± 0.13 in 1986 and 0.69 ± 0.13 in 1987. Seedlings with low chilling requirements (CR) were not observed in crosses where both parents had high bud-chilling requirements. `Koningszuur' did not transmit its long CR to its seedlings. Open-pollinated (OP) seedling populations from the Malus × domestics Borkh. cultivars Anna, Dorsett Golden, Ein Shemer, Khashabi, Winter Banana, and Zabaoani, and the species and interspecific hybrids M. baccata L. DE#98, M. brevipes Rehd., M. ×robusta (Carr.) Rehd. DE#485, M. × robusta No. 5 (`R5'), M. rockii, M. turesi Rehd. PI 34143, and `Rosedale' had at least 5% of their descendants in the lower CR classes. In all but one instance, 50% or more of `Anna' descendants had low CR. Many of these seedlings were within a few classes of the extreme low CR. It is postulated that the low-CR character present in `Anna' is controlled by at least one major dominant gene and that minor genes interact to modulate its effects. Very low-CR cultivars have a shallow bud dormancy. This highly heritable component for low bud CR is related to a failure to develop a deep dormancy state, rather than to acceleration of the termination of the dormancy process.

Horticulturae ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 41 ◽  
Author(s):  
Ángela Prudencio ◽  
Federico Dicenta ◽  
Pedro Martínez-Gómez

For fruit tree (Prunus) species, flower bud dormancy completion determines the quality of bud break and the flowering time. In the present climate change and global warming context, the relationship between dormancy and flowering processes is a fundamental goal in molecular biology of these species. In almond [P. dulcis (Miller) Webb], flowering time is a trait of great interest in the development of new cultivars adapted to different climatic areas. Late flowering is related to a long dormancy period due to high chilling requirements of the cultivar. It is considered a quantitative and highly heritable character but a dominant gene (Late bloom, Lb) was also described. A major QTL (quantitative trait loci) in the linkage group (LG) 4 was associated with Lb, together with other three QTLs in LG1 and LG7. In addition, DAM (Dormancy-Associated MADS-Box) genes located in LG1 have been largely described as a gene family involved in bud dormancy in different Prunus species including peach [P. persica (L.) Batsch] and Japanese apricot (P. mume Sieb. et Zucc.). In this work, a DAM transcript was cloned and its expression was analysed by qPCR (quantitative Polymerase Chain Reaction) in almond flower buds during the dormancy release. For this purpose two almond cultivars (‘Desmayo Largueta’ and ‘Penta’) with different chilling requirements and flowering time were used, and the study was performed along two years. The complete coding sequence, designated PdDAM6 (Prunus dulcis DAM6), was subjected to a phylogenetic analysis with homologous sequences from other Prunus species. Finally, expression dynamics analysed by using qPCR showed a continuous decrease in transcript levels for both cultivars and years during the period analysed. Monitoring almond flower bud dormancy through DAM expression should be used to improve almond production in different climate conditions.


1991 ◽  
Vol 116 (4) ◽  
pp. 724-727 ◽  
Author(s):  
Creighton L. Gupton ◽  
Barbara J. Smith

Experiments were conducted to estimate the relative importance of additive and dominance genetic variances and non-allelic interactions in the inheritance of resistance to Colletotrichum spp. in strawberry (Fragaria × ananassa Duch.). Progeny of 40 parents crossed in a Comstock and Robinson Design II Mating scheme were inoculated with three isolates of C. fragariae and one isolate of C. acutatum. Disease development on each plant was rated visually. Variance components were estimated and converted to genetic variances. Estimates of were six to 10 times higher than those for Within-family variance not accounted for by equaled 35% and 38% of the total genetic variance in females and males, respectively, indicating probable epistatic effects. The frequency distribution of disease severity ratings was bimodal in both experiments, suggesting major gene action. Narrow-sense heritability estimates were 0.37 and 0.26, and broad-sense heritability estimates were 0.87 and 0.85 for females and males, respectively. Narrow-sense heritability estimates are probably sufficient to produce gains from recurrent selection. Gains from selection of clonal value should be possible because of the high broad sense heritability estimates. It appears feasible to establish a broad genetic-based population resistant to Colletotrichum spp. from which selections could be evaluated per se and/or recombined to produce improved populations.


2021 ◽  
Author(s):  
Ghasem Eghlima ◽  
Mohsen Sanikhani ◽  
Azizollah Kheiry ◽  
Javad Hadian

Abstract Glycyrrhiza glabra L. is an herbaceous, perennial plant with high distribution in Iran. Genetic variability, heritability and correlation among characters in 22 populations of G. glabra L. were studied. The genetic parameters among the traits including phenotypic variances, genotypic variances, genotype by environment variances, broad-sense heritability and genotypic and phenotypic correlation coefficients were studied. Variance components analysis showed that the extent of phenotypic coefficient of variation (PCV) was fairly higher for all the examined traits compared with genotypic coefficient of variation (GCV). Glabridin (GLA) exhibited high GCV and PCV (156.07% and 156.68%, respectively). The broad sense heritability varied from 38.92–99.79% and narrow sense heritability ranged from 9.70 % to 24.94%. Heritability of GLA, glycyrrhizic acid (GLY), liquiritin (LI), liquiritigenin (LIQ), rutin (RU) and rosmarinic acid (RA) were very high, exhibiting more than 97% heritability. Therefore, these critical characteristics can efficiently be selected and inherited in breeding programs. In most traits, the genotypic correlations showed the same direction as the phenotypic correlations. The contents of GLA and LIQ showed a positive correlation with majority of morphological traits. Therefore, selecting individual plants having desired morphological traits can be correlated with high contents of bioactive compounds in the harvested root.


2004 ◽  
Vol 34 (2) ◽  
pp. 505-510 ◽  
Author(s):  
Marcelo Renato Alves de Araújo ◽  
Bruce Coulman

Meadow bromegrass (Bromus riparius Rehm.) is a recently introduced pasture grass in western Canada. Its leafy production and rapid regrowth have made it a major grass species for pasturing beef animals in this region. As relatively little breeding work has been done on this species, there is little information on its breeding behaviour. The main objective of this study was to estimate total genetic variability, broad-sense heritability, phenotypic and genetic correlations. Forty-four meadow bromegrass clones were evaluated for agronomic characters. Genetic variation for dry matter yield, seed yield, fertility index, harvest index, plant height, plant spread, crude protein, neutral detergent fiber and acid detergent fiber, was significant. Broad-sense heritability estimates exceeded 50% for all characters. Heritability estimates were at least 3.5 times greater than their standard errors. Phenotypic and genetic correlation between all possible characters were measured. There was general agreement in both sign and magnitude between genetic and phenotypic correlations. Correlations between the different characters demonstrated that it is possible to simultaneously improve seed and forage yield. Based on the results, it appears that the development of higher yielding cultivars with higher crude protein, and lower acid and neutral detergent fibers concentration should be possible.


2008 ◽  
Vol 133 (3) ◽  
pp. 396-407 ◽  
Author(s):  
John R. Stommel ◽  
Robert J. Griesbach

Considerable diversity exists in Capsicum L. germplasm for fruit and leaf shape, size, and color as well as plant habit. Using F1, F2, and backcross generations developed from diverse parental stocks, this report describes the inheritance patterns and relationships between unique foliar characters and diverse fruit and plant habit attributes. Our results demonstrate that pepper fruit color, shape, and fruit per cluster were simply inherited with modifying gene action. Broad-sense heritability for fruit color and shape and fruit per cluster was high, whereas narrow-sense heritability for these characters was moderate to low. Although fruit clustering was simply inherited, the number of fruit per cluster exhibited a quantitative mode of inheritance. High fruit counts per cluster were linked with red fruit color and anthocyanin pigmented foliage. Fruit shape was linked with immature fruit color and inherited independently of mature fruit color. Leaf color, length, and plant height were quantitatively inherited. Leaf shape did not vary, but leaf length varied and was positively correlated with leaf width. Broad-sense heritability for leaf characters, including leaf length, leaf width, and leaf color, was high. With the exception of leaf width, which exhibited low narrow-sense heritability, high narrow-sense heritability for leaf characters denoted additive gene action. Plant height displayed high broad-sense heritability. Moderate narrow-sense heritability suggested that additive effects also influence plant height. Analysis of segregating populations demonstrated that red and orange fruit color can be combined with all possible leaf colors from green to black. These results provide new data to clarify and extend available information on the inheritance of Capsicum fruit attributes and provide new information on the genetic control of leaf characters and plant habit.


2020 ◽  
Vol 100 (1) ◽  
pp. 1-15
Author(s):  
U. Subedi ◽  
S. Acharya ◽  
S. Chatterton ◽  
J. Thomas ◽  
D. Friebel

Cercospora leaf spot (CLS), caused by Cercospora traversoana, is an important phyto-pathological problem of self-pollinated fenugreek (Trigonella-foenum graecum). Developing resistant genotypes in crop plants has been considered the best option to control diseases for economic, environmental, and social reasons. However, before this can be accomplished, knowledge about the inheritance of disease-resistant genes is necessary for creating high-yielding resistant genotypes. One susceptible fenugreek cultivar, Tristar, and two resistant accessions L3717 and PI138687 were used in two-way crosses using hand emasculation and pollination technique in a greenhouse. F1 plants were grown in a greenhouse and allowed to grow till maturity to produce F2 seeds. Some flowers from F1 plants were crossed back to both resistant and susceptible parents separately to generate backcross (BC1) seeds. Parents, F1, F2, and BC1 populations were grown in the greenhouse using a RCBD with four replications. Plants were inoculated 30 d after sowing with a suspension of C. traversoana at 2 × 105 conidia mL−1. Symptoms were observed and rated on individual plants 25 d after inoculation, and plants were categorized according to susceptible or resistant reactions based on rating scores. Mean disease score was significantly different (p < 0.0001) among generations. In both the cross combinations, results showed CLS resistance in fenugreek (from L3717 and PI138687) was governed by a single dominant gene which is moderately heritable (46% narrow sense heritability). This indicates a relatively simple pathway for transfer of genes to adapted fenugreek cultivars.


Weed Science ◽  
1987 ◽  
Vol 35 (5) ◽  
pp. 715-719 ◽  
Author(s):  
Howard F. Harrison ◽  
Alfred Jones ◽  
Philip D. Dukes

Twenty-two sweet potato [Ipomoea batatas(L.) Lam.] clones with a wide range in metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] tolerance were used to establish narrow sense heritability estimates (h2) using a greenhouse procedure. The heritability estimates were obtained from simple linear regressions (h2= 2b) of injury rating, shoot fresh weight, and change in shoot fresh weight of offspring against the same responses of parents at metribuzin concentrations of 0, 0.3, and 0.6 ppm in the potting medium and averaged data for the two concentrations. These values ranged from 0.85 to 1.0, indicating that a recurrent mass selection process should be an appropriate approach to developing metribuzin-tolerant cultivars. Several highly tolerant clones were identified.


HortScience ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 416-420 ◽  
Author(s):  
Austin L. Grimshaw ◽  
Yuanshuo Qu ◽  
William A. Meyer ◽  
Eric Watkins ◽  
Stacy A. Bonos

In recent years, turfgrass breeders have given increased attention to the development of lower maintenance turfgrass cultivars. Fine fescues (Festuca spp.) have been identified as potential candidate species for low-maintenance lawns because of their reduced need for water, mowing, and fertilizer. Unfortunately, these species have some weaknesses that must be improved to facilitate their use; perhaps, the most important of these is tolerance to wear and traffic. For this trait to be improved in new cultivars, there must be sufficient heritable variation available for plant breeders to exploit; however, little is known about the heritability of this complex trait in fine fescue species. Therefore, the objective of this study was to determine the heritability of wear and traffic tolerance in three fine fescue species. Replicated field studies were established in North Brunswick, NJ, and St. Paul, MN, and each included 157 Chewing’s fescue (Festuca rubra L. subsp. fallax), 155 hard fescue (Festuca brevipilia), and 149 strong creeping red fescue (F. rubra L. subsp. rubra) genotypes. Wear tolerance was evaluated in North Brunswick and traffic tolerance was evaluated in St. Paul during 2015 and 2016 using different simulators to determine both plant performance and broad-sense heritability estimates for wear and traffic tolerance. Broad-sense heritability estimates for the three species when calculated on a clonal basis was between 0.69 and 0.82 for wear tolerance in the North Brunswick location and between 0.49 and 0.60 for traffic tolerance in the St. Paul location. On a single-plant basis, broad-sense heritability estimates for the three species were between 0.31 and 0.45 for wear tolerance in the North Brunswick location and 0.09 and 0.12 for traffic tolerance in St. Paul. However, this research does indicate that improvement of wear and traffic tolerance in fine fescues is possible through recurrent breeding methods based on selection of replicated clonally propagated genotypes rather than selection of single individual plants of a population. This was the first study to determine the genetic effects of wear and traffic tolerance in any turfgrass species.


Sign in / Sign up

Export Citation Format

Share Document