scholarly journals Effects of Light on Growth and Flowering of Rosa hybrids `Mercedes'

1995 ◽  
Vol 120 (4) ◽  
pp. 571-576 ◽  
Author(s):  
Frank M. Maas ◽  
Edwin J. Bakx

Growth and flowering of shoots of `Mercedes' rose was investigated as a function of the level and spectral quality of photosynthetic photon flux (PPF). Experiments were performed with single-shoot plants decapitated above the two most basal leaves with five leaflets. The development of the two lateral shoots emerging from the axillary buds of these leaves was studied for 4 to 6 weeks. To discriminate between the effects of irradiance and light quality, plants were grown in growth chambers in which PPF and its spectral composition could be controlled. At a photoperiod of 12 hours, the length, weight, and flowering of the shoots strongly increased with irradiance. The growth and number of flowering shoots were always higher for the uppermost than for the second shoot. At the highest PPF (270 μmol·m-2·s-1), flowering occurred in 89% and 33% of the uppermost and second shoots, respectively. At an irradiance level of 90 μmol·m-2·s-1, these percentages were 6% and 0%. Although length and dry weight of both types of shoots were significantly increased by reducing the amount of blue light at constant PPF, flower development was not affected. In a second experiment, plants grown in white light (12 h/day) received a short treatment with low-intensity red or far-red `light at the end of each photoperiod. An end-of-day treatment with red light resulted in significantly more flowering shoots than far-red. The red far-red reversibility of this flowering response indicates the involvement of the photoreceptor phytochrome.

2020 ◽  
Vol 116 (1) ◽  
pp. 93
Author(s):  
Bojka KUMP

<p>Light energy is one of the most important factors regulating the growth and development of plants. In greenhouses and other controlled- environments in which the natural radiation intensities are often low, plant production relies on supplementary lighting to optimize the photosynthesis, increase production levels, and enable year-round production. For a long time, the research related to artificial lighting sources focused on the optimization of the efficiency of use for photosynthesis. The quality of light in plant production has been widely addressed only recently with the development of advanced LED technology that is energy efficient and enables the control of the spectral composition of light. Red and far-red light are sensed by the phytochromes that trigger several morphological and developmental processes that impact productivity and yield quality. Thus, to efficiently exploit all the advantages of LEDs and to develop LED arrays for specific plant applications, it is essential to understand thoroughly how light quality influences plant growth and development. This paper presents an overview of the recent developments in light quality manipulation, focusing on far-red light and the R: FR ratio, to improve yield and quality of products and to manage plant architecture and flowering in vegetable and ornamental horticulture.</p>


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 816
Author(s):  
Jianfeng Zheng ◽  
Peidian Gan ◽  
Fang Ji ◽  
Dongxian He ◽  
Po Yang

This study was conducted to compare the effects of broad spectrum during the whole seedling period and photon flux density (PFD) in the healing stage on the growth and energy use efficiency of grafted tomato (Lycopersicon esculentum Mill.) transplants in a plant factory. Fluorescent lights, white LED lights, and white plus red LED lights were applied at the growth processes of grafted tomato transplants from germination of rootstock and scion to post-grafting. Three levels of PFD (50, 100, 150 μmol m−2 s−1) were set in the healing stage under each kind of light quality. The results indicated that the growth and quality of grafted tomato transplants under different broad spectrums were influenced by the ratio of red to blue light (R/B ratio) and the ratio of red to far-red light (R/FR ratio). A higher R/B ratio was beneficial to total dry matter accumulation, but excessive red light had a negative effect on the root to shoot ratio and the seedling quality index. The higher blue light and R/FR ratio suppressed stem extension synergistically. The LED lights had good abilities to promote plant compactness and leaf thickness in comparison with fluorescent lights. The plant compactness and leaf thickness increased with the increase in daily light integral in the healing stage within a range from 2.5 to 7.5 mol m−2 d−1 (PFD, 50 to 150 μmol m−2 s−1). Compared to fluorescent lights, the LED lights showed more than 110% electrical energy saving for lighting during the whole seedling period. Higher PFD in the healing stage did not significantly increase the consumption of electric power for lighting. White plus red LED lights with an R/B ratio of 1.2 and R/FR ratio of 16 were suggested to replace fluorescent lights for grafted tomato transplants production considering the high quality of transplants and electrical energy saving, and PFD in the healing stage was recommended to be set to 150 μmol m−2 s−1.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1996
Author(s):  
Yali Li ◽  
Jie Xiao ◽  
Jiangtao Hu ◽  
Byoung Ryong Jeong

The optimal photoperiod and light quality for runner induction in strawberries ‘Sulhyang’ and ‘Maehyang’ were investigated. Two experiments were carried out in a semi-closed walk-in growth chamber with 25/15 °C day/night temperatures and a light intensity of 250 μmol·m–2·s–1photosynthetic photon flux density (PPFD) provided from white light-emitting diodes (LEDs). In the first experiment, plants were treated with a photoperiod of either 12, 14, 16, 18, 20, or 22 h In the second experiment, a total of 4 h of night interruption (NI) light at an intensity of 70 μmol·m–2·s–1PPFD provided from either red, blue, green, white, or far-red LED in addition to 11 h short day (SD). The results showed that both ‘Sulhyang’ and ‘Maehyang’ produced runners when a photoperiod was longer than 16 h, and the number of runners induced positively correlated with the length of photoperiod. However, the plant growth, contents of chlorophyll, sugar and starch, and Fv/Fo decreased in a 22 h photoperiod. All qualities of the NI light, especially red light, significantly increased the number of runners and daughter plants induced per plant as compared with those in the SD treatment in both cultivars. In a conclusion, a photoperiod between 16 and 20 h and NI light, especially red NI light, can be used for quality runner induction in both ‘Sulhyang’ and ‘Maehyang’.


2018 ◽  
Vol 98 (6) ◽  
pp. 1321-1330
Author(s):  
Jaimin S. Patel ◽  
Leora Radetsky ◽  
Mark S. Rea

Sweet basil (Ocimum basilicum L.) is primarily used for culinary purposes, but it is also used in the fragrance and medicinal industries. In the last few years, global sweet basil production has been significantly impacted by downy mildew caused by Peronospora belbahrii Thines. Nighttime exposure to red light has been shown to inhibit sporulation of P. belbahrii. The objective of this study was to determine if nighttime exposure to red light from light-emitting diodes (λmax = 625 nm) could increase plant growth (plant height and leaf size) and yield (number and weight of leaves) in basil plants. In two sets of greenhouse experiments, red light was applied at a photosynthetic photon flux density of 60 μmol m−2 s−1 during the otherwise dark night for 10 h (from 2000 to 0600). The results demonstrate that exposure to red light at night can increase the number of basil leaves per plant, plant height, leaf size (length and width), and leaf fresh and dry weight compared with plants in darkness at night. The addition of incremental red light at night has the potential to be cost-effective for fresh organic basil production in controlled environments.


Botany ◽  
2010 ◽  
Vol 88 (5) ◽  
pp. 462-470 ◽  
Author(s):  
Keith Reinhardt ◽  
William K. Smith ◽  
Gregory A. Carter

Light quantity and quality strongly influence plant ecophysiology, especially in cloud forests. Only a few studies have investigated the quantitative effects of clouds on incident sunlight, and almost no studies have explored the specific effects of cloud immersion on light quality. In the present study, the spectral quantity and quality of sunlight during sunny (S), low cloud (LC), and cloud immersed (CI) days in open canopy and understory microsites are compared in high elevation cloud forests in the southern Appalachian Mountains, USA. Cumulative daily radiation measured on CI days was 85% less than on S days at open sites, but about the same as S days in understory sites. LC and CI conditions enhanced blue light by 5%–15% in open sites, but decreased it by 25%–60% in understory sites. In cloudy conditions, red light decreased by 6%–11% in open areas and increased by 25%–30% in understory sites. Cloudiness also resulted in important changes in spectral band ratios, and was associated with light diffusivity. Thus, cloud regimes had a strong influence on the photosynthetic light quality of incident sunlight.


2021 ◽  
Author(s):  
Lei Zhou ◽  
Chao Xing ◽  
Wei Qiang ◽  
Chaoqun Hua ◽  
Liyang Tong

Abstract Myopia is prevalent worldwide, particularly in East and Southeast Asia. Recent studies have suggested that the spectral composition of ambient lighting influences refractive development, especially in humans. We aimed to determine the effect of 650-nm single-wavelength red light on the inhibition of myopia progression in children. In this retrospective cohort study, 105 myopic children (spherical equivalent refractive error [SER], -6.75 to -1.00 dioptres (D)) aged from 4 to 14 years old were retrospectively reviewed. Subjects were treated with 650-nm, low-intensity, single-wavelength red light twice a day for 3 minutes each session, with at least a 4-hour interval between sessions. IOL Master was utilized to measure the axial length (AL) and corneal curvature. Choroidal images were assessed using enhanced depth imaging optical coherence tomography (EDI-OCT), and the luminal area (LA) and stromal area were converted to binary images by the Niblack method. At baseline, the mean SER was -3.09 ± 1.74 D and -2.87 ± 1.89 D at 9 months, and significant changes occurred over time (P = 0.019). The AL increased by -0.06 ± 0.19 mm for 9 months (0.21 ± 0.15 mm pretreatment; P<0.001). The subfoveal choroidal thickness (SFChT) had changed by 45.32 ± 30.88 μm at the 9-month examination (P<0.001). Repetitive exposure to 650-nm, low-intensity, single-wavelength red light effectively slowed the progression of myopia and reduced axial growth after short treatment durations. These results require further validation in a longitudinal study, as well as further research in animal models.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 436E-436
Author(s):  
Teresa A. Cerny ◽  
Nihal C. Rajapakse ◽  
Ryu Oi

Growth chambers constructed from photoselective plastic films were used to investigate the effects of light quality on height manipulation and flowering of photoperiodic plant species. Three types of treatment films were used; control, a far-red light intercepting film (YXE-10) and a red light intercepting film (SXE-4). The red (600-700 nm):far-red (700-800 nm) ratios and phytochrome photoequilibrium estimates for the control, YXE-10 and SXE-4 films were 1.0 and 0.71, 1.5 and 0.77, and 0.71 and 0.67, respectively. The photosynthetic photon flux was adjusted to uniformity among chambers using neutral density filters. Spectral filters did not effect minimum and maximum air temperatures. Experiments were conducted using quantitative long day (Antirrhinum majus and Petunia × hybrida), quantitative short day (Zinnia elegans and Dendranthema × grandiflorum) and day-neutral (Rosa × hydrida) plant species under natural short-day conditions. Plants produced under the YXE-10 filters were significantly shorter than the control plants, while plants produced under the SXE-4 films had similar or increased height compared to the control plants. However, both height response and flowering times varied with the crop species. Flowering time of Rosa × hybrida plants was uniform among all treatments. Flowering of quantitative long-day plants was delayed by at least 10 days under the YXE-10 film and was most responsive to the filtered light. Flowering of quantitative short-day plants was delayed by 2 days under the YXE-10. Days to flower for plants produced under the SXE-4 film were similar to the control plants for all species tested.


1991 ◽  
Vol 46 (7-8) ◽  
pp. 542-548 ◽  
Author(s):  
F. López-Figueroa

Abstract The chlorophyll synthesis in the brown algae Desmarestia aculeata is affected by light quality and by the nutrient state in the medium before the illumination. Pulses of 5 min of red, green and blue light together with 200 μM nitrate in plants growing under natural conditions deter­ mined similar induction of chlorophyll synthesis. However, when the plants were incubated previously under starvation conditions the light effect was different. The induction of chlorophyll synthesis was greater after blue and green light than after red light pulses. Red-light photoreceptor was only involved in the chlorophyll synthesis under no nutrient limitations and under starvation conditions after previous illumination with blue light followed by far-red light. The induction of chlorophyll synthesis by green and blue light pulses applied together with nitrate was greater when the algae were incubated in starvation conditions than in natural conditions (normal nutrient state). Because all light effects were partially reversed by far-red light the involvement of a phyto-chrome-like photoreceptor is proposed. In addition, a coaction between blue-and a green-light photoreceptors and phytochrome is suggested.


2019 ◽  
Vol 99 (5) ◽  
pp. 688-700 ◽  
Author(s):  
Junwei Yang ◽  
Tingting Liang ◽  
Lu Liu ◽  
Tonghua Pan ◽  
Zhirong Zou

Stomatal opening/closure plays a key role in balancing a plant’s need to conserve water, while still allowing for the exchange of photosynthetic and respiratory gasses with the atmosphere. Stomatal opening/closure can be induced by differences in light quality but a detailed knowledge of the role of light in stomatal regulation in tomato is limited. In this study, we evaluated red and blue light-dependent stomatal opening processes in tomato seedlings and explored the mechanisms involved using different light-quality treatments. After 10 h of darkness, tomato seedlings were subjected to the following five treatments: monochromatic red light (R), 33% blue (2R1B), 50% blue (1R1B), 67% blue (1R2B), and monochromatic blue light (B) at 200 μmol m−2s−1light intensity. The highest stomatal conductance recorded were for 1R1B. Stomatal aperture under 1R1B showed a 92.8% increase after 15 min and a 28.6% increase after 30 min compared with under R alone. Meanwhile, the study shows that the expressions of the plasma membrane H+-ATPase in the leaf were regulated by different proportions of blue light. The results show that the expressions of HA1 and HA4 increased under 1R1B and 1R2B after 15 min of exposure compared with under R alone. Under 1R1B, our results also show net photosynthesis increased compared with R and B after longer treatments, which may be related to chloroplast ultrastructure, and leaf dry weight increased compared with under 1R2B or B alone, but there were no differences under the R and 2R1B light treatments.


1986 ◽  
Vol 227 (1248) ◽  
pp. 381-393 ◽  

The influence of light quality on the growth and chlorophyll and phycobiliprotein composition of eight strains of planktonic blue-green algae has been investigated. Growth rate in chromatic (red, green, blue) light (12 μE m -2 s -1 ) (1 μE = 6 × 10 17 photons) is a general function of the light absorption capacity of the cell. In all strains examined growth rate is enhanced in red light, and in Oscillatoria redekei and Gloeotrichia echinulata CC1 it exceeds the maximum growth rate possible in white light of a higher photon flux density under otherwise similar experimental conditions. In green light the growth rate of six phycocyanin-rich strains is approximately 60–75% of that in white light (12 μE m -2 s -1 ), but growth rate is enhanced in O. agardhii 7821 and G. echinulata CC1, which synthesize the green-light-absorbing phycobiliprotein, phycoerythrin. With the exception of these two phycoerythrin-producing strains, incubation in blue light results in a pronounced reduction in growth rate, which in the majority of strains is associated with a specific decline in cell chlorophyll concentrations. In all strains cell chlorophyll and phycobiliprotein content is similar in both white and green light. Associated with the enhancement of growth rate in red light there is a general decline in cell pigment concentrations. An increase in the cell chlorophyll: phycobiliprotein ratio also occurs in a number of strains in red light. This qualitative variation in pigmentation occurs where growth rate is at or near its maximum rate and in Gloeotrichia echinulata CC1 is the result of a specific reduction in the rate of phycoerythrin synthesis. In contrast to other blue-green algae capable of chromatic adaptation, the modulation of phycoerythrin synthesis in this strain is influenced considerably by the photon flux density of red light.


Sign in / Sign up

Export Citation Format

Share Document