scholarly journals Sensitivity of Continuous and Discrete Plant and Soil Water Status Monitoring in Peach Trees Subjected to Deficit Irrigation

1999 ◽  
Vol 124 (4) ◽  
pp. 437-444 ◽  
Author(s):  
David A. Goldhamer ◽  
Elias Fereres ◽  
Merce Mata ◽  
Joan Girona ◽  
Moshe Cohen

To characterize tree responses to water deficits in shallow and deep rooted conditions, parameters developed using daily oscillations from continuously measured soil water content and trunk diameter were compared with traditional discrete monitoring of soil and plant water status in lysimeter and field-grown peach trees [Prunus persica (L.) Batsch `O'Henry']. Evaluation occurred during the imposition of deficit irrigation for 21 days followed by full irrigation for 17 days. The maximum daily available soil water content fluctuations (MXAWCF) taken at any of the four monitored root zone depths responded most rapidly to the deficit irrigation. The depth of the MXAWCF increased with time during the deficit irrigation. Differences relative to a fully irrigated control were greater in the lysimeter than the field-grown trees. Minimum daily trunk diameter (MNTD) and maximum daily trunk shrinkage (MDS) responded sooner than midday stem water potential (stem Ψ), predawn or midday leaf water potential (predawn leaf Ψ and leaf Ψ), or photosynthesis (A). Parameters based on trunk diameter monitoring, including maximum daily trunk diameter (MXTD), correlated well with established physiological parameters of tree water status. Statistical analysis of the differences in the measured parameters relative to fully irrigated trees during the first 10 days of deficit irrigation ranked the sensitivity of the parameters in the lysimeter as MXAWCF > MNTD > MDS > MXTD > stem Ψ = A = predawn leaf Ψ = leaf Ψ. Equivalent analysis with the field-grown trees ranked the sensitivity of the parameters as MXAWCF > MNTD > MDS > stem Ψ = leaf Ψ = MXTD = predawn leaf Ψ > A. Following a return to full irrigation in the lysimeter, MDS and all the discrete measurements except A quickly returned to predeficit irrigation levels. Tree recovery in the field-grown trees was slower and incomplete due to inadequate filling of the root zone. Fruit size was significantly reduced in the lysimeter while being minimally affected in the field-grown trees. Parameters only available from continuous monitoring hold promise for improving the precision of irrigation decision-making over the use of discrete measurements.

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 425 ◽  
Author(s):  
Fairouz Slama ◽  
Nessrine Zemni ◽  
Fethi Bouksila ◽  
Roberto De Mascellis ◽  
Rachida Bouhlila

Water scarcity and quality degradation represent real threats to economic, social, and environmental development of arid and semi-arid regions. Drip irrigation associated to Deficit Irrigation (DI) has been investigated as a water saving technique. Yet its environmental impacts on soil and groundwater need to be gone into in depth especially when using brackish irrigation water. Soil water content and salinity were monitored in a fully drip irrigated potato plot with brackish water (4.45 dSm−1) in semi-arid Tunisia. The HYDRUS-1D model was used to investigate the effects of different irrigation regimes (deficit irrigation (T1R, 70% ETc), full irrigation (T2R, 100% ETc), and farmer’s schedule (T3R, 237% ETc) on root water uptake, root zone salinity, and solute return flows to groundwater. The simulated values of soil water content (θ) and electrical conductivity of soil solution (ECsw) were in good agreement with the observation values, as indicated by mean RMSE values (≤0.008 m3·m−3, and ≤0.28 dSm−1 for soil water content and ECsw respectively). The results of the different simulation treatments showed that relative yield accounted for 54%, 70%, and 85.5% of the potential maximal value when both water and solute stress were considered for deficit, full. and farmer’s irrigation, respectively. Root zone salinity was the lowest and root water uptake was the same with and without solute stress for the treatment corresponding to the farmer’s irrigation schedule (273% ETc). Solute return flows reaching the groundwater were the highest for T3R after two subsequent rainfall seasons. Beyond the water efficiency of DI with brackish water, long term studies need to focus on its impact on soil and groundwater salinization risks under changing climate conditions.


1975 ◽  
Vol 6 (3) ◽  
pp. 170-188 ◽  
Author(s):  
K. J. KRISTENSEN ◽  
S. E. JENSEN

A model for calculating the daily actual evapotranspiration based on the potential one is presented. The potential evapotranspiration is reduced according to vegetation density, water content in the root zone, and the rainfall distribution. The model is tested by comparing measured (EAm) and calculated (EAc) evapotranspirations from barley, fodder sugar beets, and grass over a four year period. The measured and calculated values agree within 10 %. The model also yields information on soil water content and runoff from the root zone.


1997 ◽  
Vol 24 (1) ◽  
pp. 19-24 ◽  
Author(s):  
P. J. Sexton ◽  
J. M. Bennett ◽  
K. J. Boote

Abstract Peanut (Arachis hypogaea L.) fruit growth is sensitive to surface soil (0-5 cm) conditions due to its subterranean fruiting habit. This study was conducted to determine the effect of soil water content in the pegging zone (0-5 cm) on peanut pod growth rate and development. A pegging-pan-root-tube apparatus was used to separately control soil water content in the pegging and root zone for greenhouse trials. A field study also was conducted using portable rainout shelters to create a soil water deficit. Pod phenology, pod and seed growth rates, and final pod and seed dry weights were determined. In greenhouse studies, dry pegging zone soil delayed pod and seed development. In the field, soil water deficits in the pegging and root zone decreased pod and seed growth rates by approximately 30% and decreased weight per seed from 563 to 428 mg. Pegs initiating growth during drought stress demonstrated an ability to suspend development during the period of soil water deficit and to re-initiate pod development after the drought stress was relieved.


2011 ◽  
Vol 63 (4) ◽  
pp. 1167-1171 ◽  
Author(s):  
Ljiljana Prokic ◽  
Radmila Stikic

The effects of drought and partial root drying (PRD) on shoot and root growth was assessed in the wild type Ailsa Craig (WT) and the flacca tomato mutant deficient in the plant hormone ABA. Our results show that drought had an inhibitory effect on shoot growth in flacca and especially in WT; the most profound effect was observed in FI (full irrigation), then PRD and the smallest in D plants. Root development in both WT and flacca was stimulated after the 3rd day of the experiment following a decrease in the soil water content. On the 11th day of the experiment, when the soil water content was reduced by about 50% of full irrigation (FI), the root density was increased in the drying part of the PDR and on both sides of the drought treatment. On the basis of these results it can be assumed that increased root density and root length represent an adaptation or root adjustment to drought conditions.


2011 ◽  
pp. 197-203
Author(s):  
I. Abrisqueta ◽  
J. Vera ◽  
J.M. Abrisqueta ◽  
M.C. Ruiz-Sánchez ◽  
L.M. Tapia

Sign in / Sign up

Export Citation Format

Share Document