scholarly journals Current state of steelmaking slag processing

2022 ◽  
Vol 25 (6) ◽  
pp. 782-794
Author(s):  
S. S. Belskii ◽  
A. A. Zaitseva ◽  
A. A. Tyutrin ◽  
Z. Z. Ismoilov ◽  
A. N. Baranov ◽  
...  

In the present work, the properties and composition of steelmaking slag are assessed by analysing existing processing methods, including desulfurisation and dephosphorisation. The atomic absorption and optical emission methods were used to study the chemical composition of slag samples, and metallographic analysis was used to study their microstructure. Major approaches to processing slags applied in Russia and abroad were studied. It was shown that steelmaking slags are neutralised and treated by various methods and subsequently applied in construction and road industries, while the obtained phosphorus-containing products are used in agriculture instead of superphosphate. In addition, these products reduce lime consumption and improve slag formation in steelmaking. The key factor hampering reusing electric steelmaking and converter slags for metal refining is shown to be the presence of phosphorus. The chemical composition of slag samples from the electric steelmaking production was analysed; the iron content amounted to 33.2 wt%, calcium – 19.15 wt%, phosphorus – 0.33 wt% and silicon – 5.39 wt%. Iron is present in the oxidised form (FeO, Fe2O3 and Fe3O4), silicon and calcium in the form of dicalcium silicate (2CaO ∙ SiO2 ), phosphorus in the form of calcium silicophosphate having complex composition – Ca2(SiO4)6(Ca3(PO4)2. Phosphorus is fed to the melting units with gangue minerals, agglomerate, ore and fluxes. When the slags are reused, phosphorus returns to the metal, thus contaminating the final product. Possible methods for extracting phosphorus from steelmaking slags include magnetic and electrostatic separation, gravity and flotation concentration, as well as hydrometallurgical processing.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rasa Zalakeviciute ◽  
Katiuska Alexandrino ◽  
Yves Rybarczyk ◽  
Alexis Debut ◽  
Karla Vizuete ◽  
...  

Abstract Particulate matter (PM) is one of the key pollutants causing health risks worldwide. While the preoccupation for increased concentrations of these particles mainly depends on their sources and thus chemical composition, some regions are yet not well investigated. In this work the composition of chemical elements of atmospheric PM10 (particles with aerodynamic diameters ≤ 10 µm), collected at the urban and suburban sites in high elevation tropical city, were chemically analysed during the dry and wet seasons of 2017–2018. A large fraction (~ 68%) of PM10 composition in Quito, Ecuador is accounted for by water-soluble ions and 16 elements analysed using UV/VIS spectrophotometer and Inductively Coupled Plasma—Optical Emission Spectroscopy (ICP-OES). Hierarchical clustering analysis was performed to study a correlation between the chemical composition of urban pollution and meteorological parameters. The suburban area displays an increase in PM10 concentrations and natural elemental markers during the dry (increased wind intensity, resuspension of soil dust) season. Meanwhile, densely urbanized area shows increased total PM10 concentrations and anthropogenic elemental markers during the wet season, which may point to the worsened combustion and traffic conditions. This might indicate the prevalence of cardiovascular and respiratory problems in motorized areas of the cities in the developing world.


2015 ◽  
Vol 754-755 ◽  
pp. 1017-1022 ◽  
Author(s):  
Petrică Vizureanu ◽  
Mirabela Georgiana Minciună ◽  
Dragoş Cristian Achiţei ◽  
Andrei Victor Sandu ◽  
Kamarudin Hussin

.The paper present aspects about the obtaining of non-precious dental alloys (type CoCrMo and CoCrMoSi7), the determination of chemical composition by optical emission spectrometry and the experimental tests for determining the tensile strength, made on standard plate samples. The base material used in experiments was a commercial alloy, from CoCrMo system, which belongs to the class of dental non-precious alloys, intended to medical applications. The obtaining of studied alloy was made on arc re-melting installation, under vacuum, type MRF ABJ 900. The process followed to realize a rapid melting, with a maximum admissible current intensity. The samples for tests were obtained by casting in an electric arc furnace, under vacuum, in optimal conditions for melting and solidification and processing by electro-erosion, to eliminate all the disturbing factors which come by processing conditions for the samples. The determination of chemical composition for cobalt based alloys, by optical emission spectrometry, was made on SpectromaxX equipment with spark. The electrical discharge is made with the elimination of an energy quantity, fact which determine plasma forming and light issue. Tensile tests for standard samples, made from cobalt based alloy, was made on Instron 3382 testing machine, and assisted by computer. The obtained results are: elongation, elasticity modulus, tensile strength and offer complete information about the analyzed mechanical properties. For the certitude of obtained experimental results, the tests were made on samples with specific dimensions according ISO 6892-1:2009(E) standard, both for the tensile strength, and also machine operation.


2018 ◽  
Vol 284 ◽  
pp. 956-962 ◽  
Author(s):  
Yu.L. Starostina ◽  
O.A. Plotnikova

The article presents the findings of the research concerning the usage of slowly cooled crystallized steelmaking slags, taken from slag disposal area, in the raw mix for autoclaved silicate materials. By means of dry milling and with the use of this slag the slag-containing binders of various compositions and basicity were prepared. The application of steelmaking slags in the raw mix allows intensifying the process of new formations synthesis and increasing the amount and crystallization degree of low-basic calcium silicate hydrates of the tobermorite group, which provides more than twofold increase of strength characteristics of the obtained materials as compared to the control sample.


2018 ◽  
Vol 31 (4) ◽  
pp. 423-432 ◽  
Author(s):  
Vanessa Bernardi BRAGA ◽  
Maitê de Moraes VIEIRA ◽  
Ingrid Bergman Inchausti de BARROS

ABSTRACT Objective To determine the centesimal composition of minerals, fatty acids and vitamin C of leaves and tubers of crem, and to discuss the nutritional potential of the T. pentaphyllum species. Methods The centesimal composition of protein, lipid, fiber, ash and carbohydrate was determined by gravimetric analysis. Mineral composition was determined by optical emission spectrometry. Vitamin C was determined by dinitrophenylhydrazine method. Fatty acids were determined by gas chromatography. The percentage of recommended dietary intake of leaves and tubers of crem was calculated for each nutrient. Results A high content of fibrous fraction (63.07g/100g), potassium (4.55g/100g), magnesium (553.64mg/100g) and sulfur (480.79mg/100g) was observed in the chemical composition of leaves. In tubers, a high carbohydrate content was observed, with 62.60g/100g of starch and 3.43g/100g of fiber, as well as high potassium (0.58g/100g), sulfur (447.14g/100), calcium (205.54g/100g) and phosphorus (530.07g/100g) levels. The vitamin C content of tubers was 78.43mg/100g and the linoleic acid content was 0.455g/100g. The intake of 100g of crem leaves may contribute with 65% of the recommended dietary intake of sulfur. The intake of 100g of crem tuber may contribute with 106% of the recommended dietary intake of sulfur and 21% of the recommended dietary intake of Vitamin C. Conclusion The chemical composition of crem (Tropaeolum pentaphyllum Lam.) tubers and leaves demonstrated an important contribution of nutrients, mainly sulfur, vitamin C and linoleic acid in its tubers, indicating a high nutritional potential of this species.


2017 ◽  
Vol 906 ◽  
pp. 1-7 ◽  
Author(s):  
I.V. Osetkovskiy ◽  
N.A. Kozyrev ◽  
R.E. Kryukov

In the article is shown the comparative analysis between structures of surfaced by the flux coded wire metal systems Fe-C-Si-Mn-Cr-Ni-Mo-V and Fe-C-Si-Mn-Ni-Mo-W-V. These powder wires are supposed to be used in recovering details and equipment components and machines, that works in conditions of intensive abrasive – shock wear. Manufacturing and surfacing of flux cored wires samples were made in laboratory conditions. Defined chemical composition of the surfaced metal. Deposited metal samples hardness and wear resistance were researched. In the course of deposited meta surface metallographic analysis were made following metallographic researches: defined nature and level of nonmetallic oxides impurity, type and morphology of the microstructure, grain size of surfaced samples. Estimation of the chemical composition components influence on the hardness and wear resistance were obtained.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 435 ◽  
Author(s):  
Guohao Zhang ◽  
Jing Chen ◽  
Min Zheng ◽  
Zhenyu Yan ◽  
Xufei Lu ◽  
...  

The present study aims to reveal the mechanism of element vaporization of Ti-6Al-4V alloy during selective laser melting (SLM). The equations of Redlich–Kister and the thermodynamics principles were employed to calculate the vaporization thermodynamics, which contributes to the obtaining the vaporization kinetic based on the Chapman-Enskog theory and the diffusion model. According to the achieved vaporization model, the elements with the most prominent tendency and flux to vaporize were distinguished. Moreover, the effect of the process parameters on the vaporization of Al and Ti is experimentally investigated using inductively coupled plasma optical emission spectrometer (ICP) technology. The analyzed results of the chemical composition of the powders and builds show a great agreement with the kinetic results calculated by the vaporization model. Notably, the element vaporization can be curbed by regulating the laser energy input.


2013 ◽  
Vol 59 (No. 1) ◽  
pp. 16-22 ◽  
Author(s):  
M. Müller ◽  
P. Hrabě

We evaluated a degree of the machine part abrasive wear with secondary focus on their hardness. The paper states laboratory results of overlay systems from their wear resistance point of view. Laboratory experiments were carried out by two-body abrasion on bonded abrasive of a P120 granularity. The results proved an increased abrasive wear resistance of martensitic, ledeburitic and stellitic overlays against eleven different original products. The overlay UTP Ledurit 60 reached the optimum values. The GD-OES (Glow Discharge Optical Emission Spectroscopy) method proved the different chemical composition of the overlay from the stated chemical composition of the overlaying electrode.    


1999 ◽  
Vol 192 ◽  
pp. 377-380
Author(s):  
Peeter Traat

The initial chemical composition of stars is, besides the mass, another key factor in stellar evolution. Through stellar lifetimes and impact on radiation output and nucleosynthesis of stars it is controlling both the pace of evolution of galactic matter/light and changes in their integrated observables and spectra.


Sign in / Sign up

Export Citation Format

Share Document