scholarly journals Design and Research Process of Microstrip Low-Pass Filters with High Slope Steepness

Author(s):  
Y. A. Lamanov ◽  
◽  
T. O. Kudryavtseva ◽  
N. B. Drobotun ◽  
◽  
...  

This paper presents the results of design process and scientific investigation of planar low pass filters with cut-off frequencies of 6 and 7 GHz. Main features of this design are high steep performance, high level of rejection out of band (in comparison to conventional topologies), high filter order and small occupied area. The analysis of high absorptive electromagnetic material influence on filter performance are shown as well

2021 ◽  
Author(s):  
◽  
Christopher David Welch

<p>Parametric design tools and visual programming languages are fast becoming an important part of the architects design process. A review of current literature notes that the barrier to entry into the medium is lowering while the power of the tools available is increasing. The purpose of this research is to use these emerging tools to explore complex architectural issues related to space planning and massing. This research aims to bring these aspects of the design process together to generate an architecture where programme and aesthetic are derived in equal measure by the architect and the computer. The project began with a series of technical studies focusing primarily on space planning, massing, site analysis and circulation with the purpose of using an amalgamation of these techniques to develop into a final generative algorithm. These ideas are explored through an open ended design process of iterative research and testing, self and peer review, development and critical reflection. The viability of the algorithm is then tested through the generation a number of test buildings, across variety of sites. In order to provide a direction and author a degree of creative friction within the research process, the projects are framed around the development of a mid-size, urban sited secondary school. The final algorithm provides constraints in such a way that the architecture evolves in a natural, predictable way that can still surprise and inform, as well as consistently producing viable, interesting iterations of buildings. This process, described as an “open box” structure, produced a wide variety of working concepts and provided a high level of control as a designer.</p>


2021 ◽  
Author(s):  
◽  
Christopher David Welch

<p>Parametric design tools and visual programming languages are fast becoming an important part of the architects design process. A review of current literature notes that the barrier to entry into the medium is lowering while the power of the tools available is increasing. The purpose of this research is to use these emerging tools to explore complex architectural issues related to space planning and massing. This research aims to bring these aspects of the design process together to generate an architecture where programme and aesthetic are derived in equal measure by the architect and the computer. The project began with a series of technical studies focusing primarily on space planning, massing, site analysis and circulation with the purpose of using an amalgamation of these techniques to develop into a final generative algorithm. These ideas are explored through an open ended design process of iterative research and testing, self and peer review, development and critical reflection. The viability of the algorithm is then tested through the generation a number of test buildings, across variety of sites. In order to provide a direction and author a degree of creative friction within the research process, the projects are framed around the development of a mid-size, urban sited secondary school. The final algorithm provides constraints in such a way that the architecture evolves in a natural, predictable way that can still surprise and inform, as well as consistently producing viable, interesting iterations of buildings. This process, described as an “open box” structure, produced a wide variety of working concepts and provided a high level of control as a designer.</p>


2015 ◽  
Vol E98.C (2) ◽  
pp. 156-161
Author(s):  
Hidenori YUKAWA ◽  
Koji YOSHIDA ◽  
Tomohiro MIZUNO ◽  
Tetsu OWADA ◽  
Moriyasu MIYAZAKI
Keyword(s):  
Ka Band ◽  
Low Pass ◽  

2011 ◽  
Vol 5 (2) ◽  
pp. 155-162
Author(s):  
Jose de Jesus Rubio ◽  
Diana M. Vazquez ◽  
Jaime Pacheco ◽  
Vicente Garcia

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 328
Author(s):  
Mikulas Huba ◽  
Damir Vrancic

The paper investigates and explains a new simple analytical tuning of proportional-integrative-derivative (PID) controllers. In combination with nth order series binomial low-pass filters, they are to be applied to the double-integrator-plus-dead-time (DIPDT) plant models. With respect to the use of derivatives, it should be understood that the design of appropriate filters is not only an implementation problem. Rather, it is also critical for the resulting performance, robustness and noise attenuation. To simplify controller commissioning, integrated tuning procedures (ITPs) based on three different concepts of filter delay equivalences are presented. For simultaneous determination of controller + filter parameters, the design uses the multiple real dominant poles method. The excellent control loop performance in a noisy environment and the specific advantages and disadvantages of the resulting equivalences are discussed. The results show that none of them is globally optimal. Each of them is advantageous only for certain noise levels and the desired degree of their filtering.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 563
Author(s):  
Jorge Pérez-Bailón ◽  
Belén Calvo ◽  
Nicolás Medrano

This paper presents a new approach based on the use of a Current Steering (CS) technique for the design of fully integrated Gm–C Low Pass Filters (LPF) with sub-Hz to kHz tunable cut-off frequencies and an enhanced power-area-dynamic range trade-off. The proposed approach has been experimentally validated by two different first-order single-ended LPFs designed in a 0.18 µm CMOS technology powered by a 1.0 V single supply: a folded-OTA based LPF and a mirrored-OTA based LPF. The first one exhibits a constant power consumption of 180 nW at 100 nA bias current with an active area of 0.00135 mm2 and a tunable cutoff frequency that spans over 4 orders of magnitude (~100 mHz–152 Hz @ CL = 50 pF) preserving dynamic figures greater than 78 dB. The second one exhibits a power consumption of 1.75 µW at 500 nA with an active area of 0.0137 mm2 and a tunable cutoff frequency that spans over 5 orders of magnitude (~80 mHz–~1.2 kHz @ CL = 50 pF) preserving a dynamic range greater than 73 dB. Compared with previously reported filters, this proposal is a competitive solution while satisfying the low-voltage low-power on-chip constraints, becoming a preferable choice for general-purpose reconfigurable front-end sensor interfaces.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 734
Author(s):  
Karolis Kiela ◽  
Marijan Jurgo ◽  
Vytautas Macaitis ◽  
Romualdas Navickas

This article presents a wideband reconfigurable integrated low-pass filter (LPF) for 5G NR compatible software-defined radio (SDR) solutions. The filter uses Active-RC topology to achieve high linearity performance. Its bandwidth can be tuned from 2.5 MHz to 200 MHz, which corresponds to a tuning ratio of 92.8. The order of the filter can be changed between the 2nd, 4th, or 6th order; it has built-in process, voltage, and temperature (PVT) compensation with a tuning range of ±42%; and power management features for optimization of the filter performance across its entire range of bandwidth tuning. Across its entire order, bandwidth, and power configuration range, the filter achieves in-band input-referred third-order intercept point (IIP3) between 32.7 dBm and 45.8 dBm, spurious free dynamic range (SFDR) between 63.6 dB and 79.5 dB, 1 dB compression point (P1dB) between 9.9 dBm and 14.1 dBm, total harmonic distortion (THD) between −85.6 dB and −64.5 dB, noise figure (NF) between 25.9 dB and 31.8 dB and power dissipation between 1.19 mW and 73.4 mW. The LPF was designed and verified using 65 nm CMOS process; it occupies a 0.429 mm2 area of silicon and uses a 1.2 V supply.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Juliana Reves Szemere ◽  
Horacio G. Rotstein ◽  
Alejandra C. Ventura

AbstractCovalent modification cycles (CMCs) are basic units of signaling systems and their properties are well understood. However, their behavior has been mostly characterized in situations where the substrate is in excess over the modifying enzymes. Experimental data on protein abundance suggest that the enzymes and their target proteins are present in comparable concentrations, leading to substrate sequestration by the enzymes. In this enzyme-in-excess regime, CMCs have been shown to exhibit signal termination, the ability of the product to return to a stationary value lower than its peak in response to constant stimulation, while this stimulation is still active, with possible implications for the ability of systems to adapt to environmental inputs. We characterize the conditions leading to signal termination in CMCs in the enzyme-in-excess regime. We also demonstrate that this behavior leads to a preferred frequency response (band-pass filters) when the cycle is subjected to periodic stimulation, whereas the literature reports that CMCs investigated so far behave as low-pass filters. We characterize the relationship between signal termination and the preferred frequency response to periodic inputs and we explore the dynamic mechanism underlying these phenomena. Finally, we describe how the behavior of CMCs is reflected in similar types of responses in the cascades of which they are part. Evidence of protein abundance in vivo shows that enzymes and substrates are present in comparable concentrations, thus suggesting that signal termination and frequency-preference response to periodic inputs are also important dynamic features of cell signaling systems, which have been overlooked.


2013 ◽  
Vol 341-342 ◽  
pp. 999-1004
Author(s):  
Wei Zhou ◽  
Ti Jing Cai

For low-pass filtering of airborne gravity data processing, elliptic low-pass digital filters were designed and filtering influences of the elliptic filter order, upper limit passband frequency, maximal passband attenuation and minimal stopband attenuation were studied. The results show that the upper limit passband frequency has the greatest effect on filtering among four parameters; the filter order and the maximal passband attenuation have some influence, but instability will increase with larger order; the effect of the minimal stopband attenuation is not obvious when reaching a certain value, which requires a combination of evaluation indicator accuracy to determine the optimal value. The standard deviations of discrepancies between the elliptic filtered gravity anomaly with optimal parameters and the commercial software result are within 1mGal, and the internal accord accuracy along four survey lines after level adjusting is about 0.620mGal.


Sign in / Sign up

Export Citation Format

Share Document