scholarly journals Comparing the Outcomes of Early and Late Tracheostomy in Severe Traumatic Brain Injury Patient

2021 ◽  
Vol 28 (4) ◽  
pp. 63-70
Author(s):  
Muhammad Ihfaz Ismail ◽  
Zamzuri Idris ◽  
Jafri Malin Abdullah ◽  
Noor Azman A Rahman ◽  
Mazin Nordin

Background: Patients with severe traumatic brain injury (TBI) were expected to have poor Glasgow Coma Scale (GCS) recovery and prolonged intubation. Therefore, an early tracheostomy procedure was indicated for all severe TBI. In view of growing concern regarding the safety and outcome of early tracheostomy on these patients, it was deemed valid and needed to be addressed. Methods: This study was conducted to compare the outcomes of early and late tracheostomies in severe TBI. Only severe TBI patients who were admitted to the Neurosurgery High Dependency Unit (NHDU), Hospital Sultanah Aminah (HSA), Johor Bahru, Johor, Malaysia and who had underwent a tracheostomy were recruited. Three main outcomes noted: duration on ventilation, length of NHDU stay and rate of ventilator associated pneumonia (VAP). Results: Out of 155 patients, 72 (46.5%) were in early tracheostomy group (ETG) and 83 (53.5%) were in late tracheostomy group (LTG). The majority of the participants, 95 (61.3%) were ethnic Malays. The mean duration on ventilator use was 2.65 days (1.57) for ETG and 5.63 days (2.35) for LTG. While, mean NHDU stay was 4.75 days (1.98) for ETG and 9.77 days (2.70) for LTG. Upon independent t-test, early duration of tracheostomies had shown significant outcome in reducing length of NHDU stay, (P < 0.001) and had shortening participants’ time on mechanical ventilator (P < 0.001). Then, based on forward multiple logistic regression test, there were significant association between comorbid (P = 0.003) and tracheostomy (P = 0.020) towards presence of VAP when adjusted for other variables. Conclusion: In this study it was found that early tracheostomy was significant in shortening the duration on ventilator, reducing the length of NHDU stay and reducing the rate of VAP.

2002 ◽  
Vol 96 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Michael N. Diringer ◽  
Tom O. Videen ◽  
Kent Yundt ◽  
Allyson R. Zazulia ◽  
Venkatesh Aiyagari ◽  
...  

Object. Recently, concern has been raised that hyperventilation following severe traumatic brain injury (TBI) could lead to cerebral ischemia. In acute ischemic stroke, in which the baseline metabolic rate is normal, reduction in cerebral blood flow (CBF) below a threshold of 18 to 20 ml/100 g/min is associated with energy failure. In severe TBI, however, the metabolic rate of cerebral oxygen (CMRO2) is low. The authors previously reported that moderate hyperventilation lowered global hemispheric CBF to 25 ml/100 g/min but did not alter CMRO2. In the present study they sought to determine if hyperventilation lowers CBF below the ischemic threshold of 18 to 20 ml/100 g/min in any brain region and if those reductions cause energy failure (defined as a fall in CMRO2). Methods. Two groups of patients were studied. The moderate hyperventilation group (nine patients) underwent hyperventilation to PaCO2 of 30 ± 2 mm Hg early after TBI, regardless of intracranial pressure (ICP). The severe hyperventilation group (four patients) underwent hyperventilation to PaCO2 of 25 ± 2 mm Hg 1 to 5 days postinjury while ICP was elevated (20–30 mm Hg). The ICP, mean arterial blood pressure, and jugular venous O2 content were monitored, and cerebral perfusion pressure was maintained at 70 mm Hg or higher by using vasopressors when needed. All data are given as the mean ± standard deviation unless specified otherwise. The moderate hyperventilation group was studied 11.2 ± 1.6 hours (range 8–14 hours) postinjury, the admission Glasgow Coma Scale (GCS) score was 5.6 ± 1.8, the mean age was 27 ± 9 years, and eight of the nine patients were men. In the severe hyperventilation group, the admission GCS score was 4.3 ± 1.5, the mean age was 31 ± 6 years, and all patients were men. Positron emission tomography measurements of regional CBF, cerebral blood volume, CMRO2, and oxygen extraction fraction (OEF) were obtained before and during hyperventilation. In all 13 patients an automated search routine was used to identify 2.1-cm spherical nonoverlapping regions with CBF values below thresholds of 20, 15, and 10 ml/100 g/min during hyperventilation, and the change in CMRO2 in those regions was determined. In the regions in which CBF was less than 20 ml/100 g/min during hyperventilation, it fell from 26 ± 6.2 to 13.7 ± 1 ml/100 g/min (p < 0.0001), OEF rose from 0.31 to 0.59 (p < 0.0001), and CMRO2 was unchanged (1.12 ± 0.29 compared with 1.14 ± 0.03 ml/100 g/min; p = 0.8). In the regions in which CBF was less than 15 ml/100 g/min during hyperventilation, it fell from 23.3 ± 6.6 to 11.1 ± 1.2 ml/100 g/min (p < 0.0001), OEF rose from 0.31 to 0.63 (p < 0.0001), and CMRO2 was unchanged (0.98 ± 0.19 compared with 0.97 ± 0.23 ml/100 g/min; p = 0.92). In the regions in which CBF was less than 10 ml/100 g/min during hyperventilation, it fell from 18.2 ± 4.5 to 8.1 ± 0 ml/100 g/min (p < 0.0001), OEF rose from 0.3 to 0.71 (p < 0.0001), and CMRO2 was unchanged (0.78 ± 0.26 compared with 0.84 ± 0.32 ml/100 g/min; p = 0.64). Conclusions. After severe TBI, brief hyperventilation produced large reductions in CBF but not energy failure, even in regions in which CBF fell below the threshold for energy failure defined in acute ischemia. Oxygen metabolism was preserved due to the low baseline metabolic rate and compensatory increases in OEF; thus, these reductions in CBF are unlikely to cause further brain injury.


2021 ◽  
Vol 11 (8) ◽  
pp. 1044
Author(s):  
Cristina Daia ◽  
Cristian Scheau ◽  
Aura Spinu ◽  
Ioana Andone ◽  
Cristina Popescu ◽  
...  

Background: We aimed to assess the effects of modulated neuroprotection with intermittent administration in patients with unresponsive wakefulness syndrome (UWS) after severe traumatic brain injury (TBI). Methods: Retrospective analysis of 60 patients divided into two groups, with and without neuroprotective treatment with Actovegin, Cerebrolysin, pyritinol, L-phosphothreonine, L-glutamine, hydroxocobalamin, alpha-lipoic acid, carotene, DL-α-tocopherol, ascorbic acid, thiamine, pyridoxine, cyanocobalamin, Q 10 coenzyme, and L-carnitine alongside standard treatment. Main outcome measures: Glasgow Coma Scale (GCS) after TBI, Extended Glasgow Coma Scale (GOS E), Disability Rankin Scale (DRS), Functional Independence Measurement (FIM), and Montreal Cognitive Assessment (MOCA), all assessed at 1, 3, 6, 12, and 24 months after TBI. Results: Patients receiving neuroprotective treatment recovered more rapidly from UWS than controls (p = 0.007) passing through a state of minimal consciousness and gradually progressing until the final evaluation (p = 0.000), towards a high cognitive level MOCA = 22 ± 6 points, upper moderate disability GOS-E = 6 ± 1, DRS = 6 ± 4, and an assisted gait, FIM =101 ± 25. The improvement in cognitive and physical functioning was strongly correlated with lower UWS duration (−0.8532) and higher GCS score (0.9803). Conclusion: Modulated long-term neuroprotection may be the therapeutic key for patients to overcome UWS after severe TBI.


2017 ◽  
Vol 32 (5) ◽  
pp. 692-704 ◽  
Author(s):  
Camille Chesnel ◽  
Claire Jourdan ◽  
Eleonore Bayen ◽  
Idir Ghout ◽  
Emmanuelle Darnoux ◽  
...  

Objective: To evaluate the patient’s awareness of his or her difficulties in the chronic phase of severe traumatic brain injury (TBI) and to determine the factors related to poor awareness. Design/Setting/Subjects: This study was part of a larger prospective inception cohort study of patients with severe TBI in the Parisian region (PariS-TBI study). Intervention/Main measures: Evaluation was carried out at four years and included the Brain Injury Complaint Questionnaire (BICoQ) completed by the patient and his or her relative as well as the evaluation of impairments, disability and quality of life. Results: A total of 90 patient-relative pairs were included. Lack of awareness was measured using the unawareness index that corresponded to the number of discordant results between the patient and relative in the direction of under evaluation of difficulties by the patient. The only significant relationship found with lack of awareness was the subjective burden perceived by the relative (Zarit Burden Inventory) ( r = 0.5; P < 0.00001). There was no significant relationship between lack of awareness and injury severity, pre-injury socio-demographic data, cognitive impairments, mood disorders, functional independence (Barthel index), global disability (Glasgow Outcome Scale), return to work at four years or quality of life (Quality Of Life after Brain Injury scale (QOLIBRI)). Conclusion: Lack of awareness four years post severe TBI was not related to the severity of the initial trauma, sociodemographic data, the severity of impairments, limitations of activity and participation, or the patient’s quality of life. However, poor awareness did significantly influence the weight of the burden perceived by the relative.


BMJ Open ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. e047305
Author(s):  
Susan Alcock ◽  
Divjeet Batoo ◽  
Sudharsana Rao Ande ◽  
Rob Grierson ◽  
Marco Essig ◽  
...  

IntroductionSevere traumatic brain injury (TBI) is a catastrophic neurological condition with significant economic burden. Early in-hospital mortality (<48 hours) with severe TBI is estimated at 50%. Several clinical examinations exist to determine brain death; however, most are difficult to elicit in the acute setting in patients with severe TBI. Having a definitive assessment tool would help predict early in-hospital mortality in this population. CT perfusion (CTP) has shown promise diagnosing early in-hospital mortality in patients with severe TBI and other populations. The purpose of this study is to validate admission CTP features of brain death relative to the clinical examination outcome for characterizing early in-hospital mortality in patients with severe TBI.Methods and analysisThe Early Diagnosis of Mortality using Admission CT Perfusion in Severe Traumatic Brain Injury Patients study, is a prospective cohort study in patients with severe TBI funded by a grant from the Canadian Institute of Health Research. Adults aged 18 or older, with evidence of a severe TBI (Glasgow Coma Scale score ≤8 before initial resuscitation) and, on mechanical ventilation at the time of imaging are eligible. Patients will undergo CTP at the time of first imaging on their hospital admission. Admission CTP compares with the reference standard of an accepted bedside clinical assessment for brainstem function. Deferred consent will be used. The primary outcome is a binary outcome of mortality (dead) or survival (not dead) in the first 48 hours of admission. The planned sample size for achieving a sensitivity of 75% and a specificity of 95% with a CI of ±5% is 200 patients.Ethics and disseminationThis study has been approved by the University of Manitoba Health Research Ethics Board. The findings from our study will be disseminated through peer-reviewed journals and presentations at local rounds, national and international conferences. The public will be informed through forums at the end of the study.Trial registration numberNCT04318665


2008 ◽  
Vol 108 (5) ◽  
pp. 943-949 ◽  
Author(s):  
Chi Long Ho ◽  
Chee Meng Wang ◽  
Kah Keow Lee ◽  
Ivan Ng ◽  
Beng Ti Ang

Object This study addresses the changes in brain oxygenation, cerebrovascular reactivity, and cerebral neurochemistry in patients following decompressive craniectomy for the control of elevated intracranial pressure (ICP) after severe traumatic brain injury (TBI). Methods Sixteen consecutive patients with isolated TBI and elevated ICP, who were refractory to maximal medical therapy, underwent decompressive craniectomy over a 1-year period. Thirteen patients were male and 3 were female. The mean age of the patients was 38 years and the median Glasgow Coma Scale score on admission was 5. Results Six months following TBI, 11 patients had a poor outcome (Group 1, Glasgow Outcome Scale [GOS] Score 1–3), whereas the remaining 5 patients had a favorable outcome (Group 2, GOS Score 4 or 5). Decompressive craniectomy resulted in a significant reduction (p < 0.001) in the mean ICP and cerebrovascular pressure reactivity index to autoregulatory values (< 0.3) in both groups of patients. There was a significant improvement in brain tissue oxygenation (PbtO2) in Group 2 patients from 3 to 17 mm Hg and an 85% reduction in episodes of cerebral ischemia. In addition, the durations of abnormal PbtO2 and biochemical indices were significantly reduced in Group 2 patients after decompressive craniectomy, but there was no improvement in the biochemical indices in Group 1 patients despite surgery. Conclusions Decompressive craniectomy, when used appropriately in protocol-driven intensive care regimens for the treatment of recalcitrant elevated ICP, is associated with a return of abnormal metabolic parameters to normal values in patients with eventually favorable outcomes.


2020 ◽  
Vol 29 (1) ◽  
pp. e13-e18
Author(s):  
Karin Reuter-Rice ◽  
Elise Christoferson

Background Severe traumatic brain injury (TBI) is associated with high rates of death and disability. As a result, the revised guidelines for the management of pediatric severe TBI address some of the previous gaps in pediatric TBI evidence and management strategies targeted to promote overall health outcomes. Objectives To provide highlights of the most important updates featured in the third edition of the guidelines for the management of pediatric severe TBI. These highlights can help critical care providers apply the most current and appropriate therapies for children with severe TBI. Methods and Results After a brief overview of the process behind identifying the evidence to support the third edition guidelines, both relevant and new recommendations from the guidelines are outlined to provide critical care providers with the most current management approaches needed for children with severe TBI. Recommendations for neuroimaging, hyperosmolar therapy, analgesics and sedatives, seizure prophylaxis, ventilation therapies, temperature control/hypothermia, nutrition, and corticosteroids are provided. In addition, the complete guideline document and its accompanying algorithm for recommended therapies are available electronically and are referenced within this article. Conclusions The evidence base for treating pediatric TBI is increasing and provides the basis for high-quality care. This article provides critical care providers with a quick reference to the current evidence when caring for a child with a severe TBI. In addition, it provides direct access links to the comprehensive guideline document and algorithms developed to support critical care providers.


2017 ◽  
Vol 127 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Pierre Esnault ◽  
Mickaël Cardinale ◽  
Henry Boret ◽  
Erwan D'Aranda ◽  
Ambroise Montcriol ◽  
...  

OBJECTIVEBlunt cerebrovascular injuries (BCVIs) affect approximately 1% of patients with blunt trauma. An antithrombotic or anticoagulation therapy is recommended to prevent the occurrence or recurrence of neurovascular events. This treatment has to be carefully considered after severe traumatic brain injury (TBI), due to the risk of intracranial hemorrhage expansion. Thus, the physician in charge of the patient is confronted with a hemorrhagic and ischemic risk. The main objective of this study was to determine the incidence of BCVI after severe TBI.METHODSThe authors conducted a prospective, observational, single-center study including all patients with severe TBI admitted in the trauma center. Diagnosis of BCVI was performed using a 64-channel multidetector CT. Characteristics of the patients, CT scan results, and outcomes were collected. A multivariate logistic regression model was developed to determine the risk factors of BCVI. Patients in whom BCVI was diagnosed were treated with systemic anticoagulation.RESULTSIn total, 228 patients with severe TBI who were treated over a period of 7 years were included. The incidence of BCVI was 9.2%. The main risk factors were as follows: motorcycle crash (OR 8.2, 95% CI 1.9–34.8), fracture involving the carotid canal (OR 11.7, 95% CI 1.7–80.9), cervical spine injury (OR 13.5, 95% CI 3.1–59.4), thoracic trauma (OR 7.3, 95% CI 1.1–51.2), and hepatic lesion (OR 13.3, 95% CI 2.1–84.5). Among survivors, 82% of patients with BCVI received systemic anticoagulation therapy, beginning at a median of Day 1.5. The overall stroke rate was 19%. One patient had an intracranial hemorrhagic complication.CONCLUSIONSBlunt cerebrovascular injuries are frequent after severe TBI (incidence 9.2%). The main risk factors are high-velocity lesions and injuries near cervical arteries.


2021 ◽  
pp. 1-13
Author(s):  
Halinder S. Mangat ◽  
Xian Wu ◽  
Linda M. Gerber ◽  
Hamisi K. Shabani ◽  
Albert Lazaro ◽  
...  

OBJECTIVEGiven the high burden of neurotrauma in low- and middle-income countries (LMICs), in this observational study, the authors evaluated the treatment and outcomes of patients with severe traumatic brain injury (TBI) accessing care at the national neurosurgical institute in Tanzania.METHODSA neurotrauma registry was established at Muhimbili Orthopaedic Institute, Dar-es-Salaam, and patients with severe TBI admitted within 24 hours of injury were included. Detailed emergency department and subsequent medical and surgical management of patients was recorded. Two-week mortality was measured and compared with estimates of predicted mortality computed with admission clinical variables using the Corticoid Randomisation After Significant Head Injury (CRASH) core model.RESULTSIn total, 462 patients (mean age 33.9 years) with severe TBI were enrolled over 4.5 years; 89% of patients were male. The mean time to arrival to the hospital after injury was 8 hours; 48.7% of patients had advanced airway management in the emergency department, 55% underwent cranial CT scanning, and 19.9% underwent surgical intervention. Tiered medical therapies for intracranial hypertension were used in less than 50% of patients. The observed 2-week mortality was 67%, which was 24% higher than expected based on the CRASH core model.CONCLUSIONSThe 2-week mortality from severe TBI at a tertiary referral center in Tanzania was 67%, which was significantly higher than the predicted estimates. The higher mortality was related to gaps in the continuum of care of patients with severe TBI, including cardiorespiratory monitoring, resuscitation, neuroimaging, and surgical rates, along with lower rates of utilization of available medical therapies. In ongoing work, the authors are attempting to identify reasons associated with the gaps in care to implement programmatic improvements. Capacity building by twinning provides an avenue for acquiring data to accurately estimate local needs and direct programmatic education and interventions to reduce excess in-hospital mortality from TBI.


2015 ◽  
Vol 16 (5) ◽  
pp. 508-514 ◽  
Author(s):  
Maroun J. Mhanna ◽  
Wael EI Mallah ◽  
Margaret Verrees ◽  
Rajiv Shah ◽  
Dennis M. Super

OBJECT Decompressive craniectomy (DC) for the management of severe traumatic brain injury (TBI) is controversial. The authors sought to determine if DC improves the outcome of children with severe TBI. METHODS In a retrospective, case-control study, medical records of all patients admitted to the pediatric ICU between May 1998 and May 2008 with severe TBI and treated with DC were identified and matched to patients who were treated medically without DC. Medical records were reviewed for patients’ demographic data and baseline characteristics. RESULTS During the study period, 17 patients with severe TBI treated with DC at a median of 2 hours (interquartile range [IQR] 1–14 hours) after admission were identified and matched to 17 contemporary controls. On admission, there were no differences between DC and control patients regarding age (10.2 ± 5.9 years vs 12.4 ± 5.4 years, respectively [mean ± SD]), sex, weight, Glasgow Coma Scale score (median 5 [IQR 3–7] vs 4 [IQR 3–6], respectively; p = 0.14), or the highest intracranial pressure (median 42 [IQR 22–54] vs 30 [IQR 21–36], respectively; p = 0.77). However, CT findings were significant for a higher rate of herniation and cerebral edema among patients with DC versus controls (7/17 vs 2/17, respectively, had herniation [p = 0.05] and 14/17 vs 6/17, respectively, had cerebral edema [p = 0.006]). Overall there were no significant differences in survival between patients with DC and controls (71% [12/17] vs 82% [14/17], respectively; p = 0.34). However, among survivors, at 4 years (IQR 1–6 years) after the TBI, 42% (5/12) of the DC patients had mild disability or a Glasgow Outcome Scale score of 5 vs none (0/14) of the controls (p = 0.012). CONCLUSIONS In this retrospective, small case-control study, the authors have shown that early DC in pediatric patients with severe TBI improves outcome in survivors. Future prospective randomized controlled studies are needed to confirm these findings.


Sign in / Sign up

Export Citation Format

Share Document