Differences in Cytochrome P450 and Nuclear Receptor mRNA Levels in Liver and Small Intestines between SD and DA Rats

2008 ◽  
Vol 23 (3) ◽  
pp. 196-206 ◽  
Author(s):  
Atsushi Kawase ◽  
Akiyuki Fujii ◽  
Makiko Negoro ◽  
Ryosuke Akai ◽  
Miki Ishikubo ◽  
...  
2008 ◽  
Vol 29 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Hideyuki ABE ◽  
Tomonori YAMANISHI ◽  
Tomoko MASHIDORI ◽  
Kyoko ARAI ◽  
Takao KAMAI

2013 ◽  
Vol 451 (3) ◽  
pp. 453-461 ◽  
Author(s):  
Claudia C. S. Chini ◽  
Carlos Escande ◽  
Veronica Nin ◽  
Eduardo N. Chini

The nuclear receptor Rev-erbα has been implicated as a major regulator of the circadian clock and integrates circadian rhythm and metabolism. Rev-erbα controls circadian oscillations of several clock genes and Rev-erbα protein degradation is important for maintenance of the circadian oscillations and also for adipocyte differentiation. Elucidating the mechanisms that regulate Rev-erbα stability is essential for our understanding of these processes. In the present paper, we report that the protein DBC1 (Deleted in Breast Cancer 1) is a novel regulator of Rev-erbα. Rev-erbα and DBC1 interact in cells and in vivo, and DBC1 modulates the Rev-erbα repressor function. Depletion of DBC1 by siRNA (small interfering RNA) in cells or in DBC1-KO (knockout) mice produced a marked decrease in Rev-erbα protein levels, but not in mRNA levels. In contrast, DBC1 overexpression significantly enhanced Rev-erbα protein stability by preventing its ubiquitination and degradation. The regulation of Rev-erbα protein levels and function by DBC1 depends on both the N-terminal and C-terminal domains of DBC1. More importantly, in cells depleted of DBC1, there was a dramatic decrease in circadian oscillations of both Rev-erbα and BMAL1. In summary, our data identify DBC1 as an important regulator of the circadian receptor Rev-erbα and proposes that Rev-erbα could be involved in mediating some of the physiological effects of DBC1.


1990 ◽  
Vol 61 (1) ◽  
pp. 32-38 ◽  
Author(s):  
JA Henry ◽  
S Nicholson ◽  
C Hennessy ◽  
TWJ Lennard ◽  
FEB May ◽  
...  

Endocrinology ◽  
1999 ◽  
Vol 140 (5) ◽  
pp. 2110-2116 ◽  
Author(s):  
Roni Mamluk ◽  
Nitzan Levy ◽  
Bo Rueda ◽  
John S. Davis ◽  
Rina Meidan

Abstract Our previous studies demonstrated that endothelin-1 (ET-1), a 21-amino acid vasoconstrictor peptide, has a paracrine regulatory role in bovine corpus luteum (CL). The peptide is produced within the gland where it inhibits progesterone production by acting via the selective type A endothelin (ETA) receptors. The present study was designed to characterize ETA receptor gene expression in different ovarian cell types and its hormonal regulation. ETA receptor messenger RNA (mRNA) levels were high in follicular cells as well as in CL during luteal regression. At this latter stage, high ETA receptor expression concurred with low prostaglandin F2α receptor mRNA. The ETA receptor gene was expressed by all three major cell populations of the bovine CL; i.e. small and large luteal cells, as well as in luteal endothelial cells. Among these various cell populations, the highest ETA receptor mRNA levels were found in endothelial cells. cAMP elevating agents, forskolin and LH, suppressed ETA receptor mRNA expression in luteinized theca cells (LTC). This inhibition was dose dependent and was evident already after 24 h of incubation. In luteinized granulosa cells (LGC), 10 and 100 ng/ml of insulin-like growth factor I and insulin (only at a concentration of 2000 ng/ml) markedly decreased ETA receptor mRNA levels. In both LGC and LTC there was an inverse relationship between ETA receptor gene expression and progesterone production; insulin (in LGC) and forskolin (in LTC) enhanced progesterone production while inhibiting ETA receptor mRNA levels. Our findings may therefore suggest that, during early stages of luteinization when peak levels of both LH and insulin-like growth factor I exist, the expression of ETA receptors in the gland are suppressed. This study demonstrates physiologically relevant regulatory mechanisms controlling ETA receptor gene expression and further supports the inhibitory role of ET-1 in CL function.


2003 ◽  
Vol 316 (1) ◽  
pp. 103-110 ◽  
Author(s):  
Lilian G Yengi ◽  
Qian Xiang ◽  
Jinmei Pan ◽  
JoAnn Scatina ◽  
John Kao ◽  
...  

1995 ◽  
Vol 108 (6) ◽  
pp. 2205-2212
Author(s):  
E.M. Durban ◽  
P.G. Nagpala ◽  
P.D. Barreto ◽  
E. Durban

Diversity of cell lineages within glandular organs is generated postnatally by differentiation of committed progenitor cells. Fundamental regulatory aspects of this process are not understood. The mouse submandibular salivary gland (SSG) served as model to assess the role of epidermal growth factor (EGF) receptor signaling during emergence of cell lineage diversity. Temporal fluctuations in EGF receptor mRNA levels coincident with crucial differentiative cell lineage transitions were revealed by RNase protection analyses. Between days 2 and 5, when proacinar cells are maturing and striated duct cells emerge, EGF receptor mRNA levels were highest and all differentiating cells exhibited EGF receptor immunoreactivity. EGF receptor mRNA levels then declined sharply and immunoreactivity became confined to ductal cells. At day 11 in male mice, and days 11 and 16 in females, a second increase in EGF receptor mRNA was detected coincident with emergence of granular convoluted tubule (GCT) cells. With completion of androgen-dependent GCT cell differentiation at the onset of puberty, EGF receptor mRNA levels and intensity of immunoreactivity decreased. Androgen effects on EGF receptor mRNA or immunoreactivity could not be detected. These temporally distinct patterns of EGF receptor expression suggest that this signaling pathway is a mechanism of potential importance in emergence of cell lineage diversity in a glandular organ.


Sign in / Sign up

Export Citation Format

Share Document