Foliar Nitrogen Application Timing Influence on Grain Yield and Protein Concentration of Hard Red Winter and Spring Wheat

2003 ◽  
Vol 95 (2) ◽  
pp. 335 ◽  
Author(s):  
Anthony G. Bly ◽  
Howard J. Woodard
2008 ◽  
Vol 88 (3) ◽  
pp. 513-518 ◽  
Author(s):  
R. E. Knox ◽  
R. M. DePauw ◽  
F. R. Clarke ◽  
F. R. Clarke ◽  
T. N. McCaig ◽  
...  

Based on 38 replicated trials over 3 yr, Alvena, hard red spring wheat (Triticum aestivum L.) expressed significantly higher mean grain yield than the checks. It was significantly earlier maturing than AC Barrie and significantly more resistant to lodging than Katepwa. Wheat protein concentration of Alvena was similar to the mean of the checks and flour protein concentration was significantly higher than the check mean. Amylograph viscosity was significantly lower than the mean of the checks. Alvena meets the end-use quality and Canadian Grain Commission’s kernel visual distinguishability specifications of the Canada Western Red Spring wheat market class. Alvena expressed moderate resistance to prevalent races of loose smut and stem rust, intermediate resistance to prevalent races of leaf rust and common bunt, and moderate susceptibility to fusarium head blight. Key words: Triticum aestivum L., cultivar description, grain yield, maturity, disease resistance


2005 ◽  
Vol 85 (2) ◽  
pp. 397-401 ◽  
Author(s):  
R. M. DePauw ◽  
T. F. Townley-Smith ◽  
G. Humphreys ◽  
R. E. Knox ◽  
F. R. Clarke ◽  
...  

Lillian, hard red spring wheat (Triticum aestivum L.), exhibited reduced cutting by the wheat stem sawfly (Cephus cinctus Nort.) and is adapted to the Canadian prairies. Lillian produced significantly more grain yield than AC Abbey and Neepawa and its grain yield and protein concentration were similar to AC Barrie. It matured significantly earlier than Superb and Laura, and had improved resistance to leaf rust and leaf spotting diseases compared to AC Abbey. Lillian is eligible for all grades of the Canada Western Red Spring (CWRS) wheat class. Key words: Triticum aestivum L., cultivar description, grain yield and protein, resistance wheat stem sawfly, leaf and stem rust


2020 ◽  
Vol 19 (3) ◽  
pp. 264-269
Author(s):  
Marcos Renan Besen ◽  
Ricardo Henrique Ribeiro ◽  
Felipe Bratti ◽  
Jorge Luiz Locatelli ◽  
Jonatas Thiago Piva

The suitable management of nitrogen (N) fertilization can increase barley grain yield, since it is the nutrient required in greater quantity. In this sense, the source and timing of nitrogen application are relevant factors. The objective was to evaluate the effects of N sources and splitting on the performance of barley. The experiment was carried out under a clayey Cambisol (550 g kg-1), in Curitibanos, Santa Catarina. Factorial randomized blocks were used: three mineral sources of N: urea (45% N); urea with urease inhibitor-NBPT (45% of N) and nitrate (30% of N), associated with two nitrogen splitting fertilization: i) split of the rate of N in two seasons: beginning of tillering and full tillering and ii) single application at full tillering. 100 kg ha-1 of N were applied. There was no interaction between the factors and there was no effect of treatments for plant height, ear length, grains per ear, ears per m² and mass of a thousand grains. Yield was influenced by the N source, where nitrate exceeded the yield from amidic sources by 16%. The splitting of N in two times did not present advantages over the single application. Urea with NBPT was not viable in relation to readily soluble forms of N, with the highest yield obtained with a nitric source.


2021 ◽  
pp. 1-7
Author(s):  
H.S. Randhawa ◽  
P.D. Brown ◽  
J. Mitchell Fetch ◽  
T. Fetch ◽  
B. McCallum ◽  
...  

AAC Castle, an awned hard red spring wheat (Triticum aestivum L.), cultivar, combines high grain yield and good agronomic characteristics with excellent resistance to leaf, stem, stripe rust, common bunt and loose smut. It also expressed tolerance to the orange wheat blossom midge. Based on 39 station years of data in the registration trials from 2014 to 2016, the grain yield of AAC Castle was about 17% higher than 5700PR but similar to the other checks. AAC Castle was significantly shorter than AAC Foray and CDC Terrain, but had similar lodging resistance and maturity. AAC Castle had higher test weight, protein concentration, falling number and flour yield than AAC Foray and CDC Terrain. AAC Castle is eligible for grade of the Canada Prairie Spring Red wheat market class.


2001 ◽  
Vol 81 (4) ◽  
pp. 631-636 ◽  
Author(s):  
F. Selles ◽  
R. P. Zentner

Results from fertilizer trials with hard red spring wheat (Triticum aestivum L.) conducted throughout southwestern Saskatchewan under fallow and cereal stubble cropping conditions were used to determine if grain prote in concentration (GPC) could be used as an index of N sufficiency to the crop. Critical GPC were determined using the Cate-Nelson R2 procedure. Grain yield and protein concentration were negatively correlated under stubble and for fallow cropping when yields were below 2858 kg ha–1 ± 179, with grain protein decreasing by 15 mg g–1 for every 1000kg ha–1 yield increase. In these two groups of observations, water and N availability, N yield and grain produced per unit N available suggested that water availability was the dominant factor limiting grain yield. For the portion of fallow observations in which grain yields were higher than 2858 kg ha–1, water availability was not limiting, and N availability controlled grain yield and protein concentration. In this group, a GPC of 128 mg g–1 (range of 123 to 135 mg g–1) marked the transition between N deficiency and sufficiency. Under stubble cropping and for the lower-yielding portion of the fallow cropping system, where water stress was predominant, the Cate-Nelson analysis identified critical protein concentrations of 160 and 154 mg g–1, respectively. However, these critical concentrations separated populations into moderately and severely water-stressed crops, rather than providing a separation based on N availability. We concluded that GPC as a post-harvest index of N sufficiency must be used with caution in southwestern Saskatchewan. Grain protein concentration below the critical limit of 128 mg g–1 is a reliable indicator of low N sufficiency, but high grain protein does not necessarily imply N sufficiency because, frequently, grain yield and protein concentration are negatively correlated due to water stress. Key words: Yield, protein, N availability, critical levels, water stress


2001 ◽  
Vol 81 (3) ◽  
pp. 399-404 ◽  
Author(s):  
P. M. Carr ◽  
G. B. Martin ◽  
W. W. Poland

Continuous wheat (Triticum aestivum L. emend. Thell.) and other intensive cropping systems are replacing t he wheat-fallow (WF) system in the semiarid prairie region of Canada and the northern USA. However, most wheat cultivar recommendations are based on performance in a WF system. Our objective was to determine if cultivar ranking for grain yield, grain protein concentration, and kernel weight changed for hard red spring wheat in WF compared with continuous wheat (WW) systems. Ten cultivars were seeded on a Dark Brown Chernozem loam following fallow and wheat over 3 consecutive years at Dickinson, ND, USA. Fertilizer was applied for equivalent yields in both systems based on soil test results. More grain and heavier kernels were produced during the crop phase of the WF system than the WW system, in part because soil-water content was greater after fallow than wheat in 2 of 3 yr. Grain protein concentration was unaffected by cropping system. Grain yield, grain protein concentration, and kernel weight differed among cultivars. Interactions did not occur between cropping systems and cultivars for any grain parameter. Results of this study support the hypothesis that wheat cultivar ranking based on performance in a WF system can be extended to a WW system. Key words: Crop rotation, cropping systems, fallow, monoculture, wheat


2019 ◽  
Vol 58 (1) ◽  
pp. 34-43
Author(s):  
R. Hackett

AbstractThere is relatively little recent information regarding the effect of timing of fertiliser N application to spring barley on grain yield and grain protein concentration (GPC) under Irish conditions. The objectives of this work were to examine the effects of a) timing of the first N application to spring barley (at sowing or at crop emergence), b) altering the proportion of the total N allocation that is applied in the first of two applications and c) delaying a portion of the total N dose until after the tillering phase on grain yield and GPC of spring barley. Twenty experiments were carried out over four seasons (2011–2014) in the south and south-east of Ireland. Results indicated that there was little consistent difference, in terms of grain yield or GPC between applying the first N at sowing compared to where the initial N application was made at crop emergence. Similarly, altering the proportion of N applied in the first application, irrespective of whether the first application was at sowing or at crop emergence, had little effect on either yield or GPC. Delaying the application of a portion (0.2) of the total N until after the tillering stage also had little consistent effect on either yield or GPC. It is concluded that where the majority of N is applied to spring barley before the end of the tillering stage, altering the timing of applications or the proportion of the total applied in each application will have limited effect on grain yield or GPC.


Sign in / Sign up

Export Citation Format

Share Document