Effects of Sodic Soil Reclamation using Flue Gas Desulphurization Gypsum on Soil Pore Characteristics, Bulk Density, and Saturated Hydraulic Conductivity

2014 ◽  
Vol 78 (4) ◽  
pp. 1201-1213 ◽  
Author(s):  
Haoliang Yu ◽  
Peiling Yang ◽  
Henry Lin ◽  
Shumei Ren ◽  
Xin He
Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1005 ◽  
Author(s):  
Lucia Toková ◽  
Dušan Igaz ◽  
Ján Horák ◽  
Elena Aydin

Due to climate change the productive agricultural sectors have started to face various challenges, such as soil drought. Biochar is studied as a promising soil amendment. We studied the effect of a former biochar application (in 2014) and re-application (in 2018) on bulk density, porosity, saturated hydraulic conductivity, soil water content and selected soil water constants at the experimental site in Dolná Malanta (Slovakia) in 2019. Biochar was applied and re-applied at the rates of 0, 10 and 20 t ha−1. Nitrogen fertilizer was applied annually at application levels N0, N1 and N2. In 2019, these levels were represented by the doses of 0, 108 and 162 kg N ha−1, respectively. We found that biochar applied at 20 t ha−1 without fertilizer significantly reduced bulk density by 12% and increased porosity by 12%. During the dry period, a relative increase in soil water content was observed at all biochar treatments—the largest after re-application of biochar at a dose of 20 t ha−1 at all fertilization levels. The biochar application also significantly increased plant available water. We suppose that change in the soil structure following a biochar amendment was one of the main reasons of our observations.


1986 ◽  
Vol 66 (4) ◽  
pp. 737-742
Author(s):  
J. A. MILLETTE ◽  
R. S. BROUGHTON

Monolith column construction and sampling procedures were described for organic soil profiles and used to measure the variation with depth of saturated hydraulic conductivity, bulk density and fiber content. The top 0.30 m of the organic soil was more permeable, had a greater bulk density and had a greater fiber content than the soil layer between 0.60 and 0.90 m from the soil surface. These columns can be used for correlations studies between physical properties and studies of the dynamic nature of the physical properties of organic soils. Key words: Saturated hydraulic conductivity, bulk density, fiber content, organic soil, monolith columns


Literature overview. The parameterization of hydrological models requires knowledge of the soil filtration properties. Generally, soil profiles are characterized by properties such as sand, silt and clay content, bulk density, organic carbon fraction or humus content, and no data on filtration properties are available. Ukrainian soil database, created in Geoecophysics of soil laboratory of National Scientific Center “Institute for Soil Science and Agrochemistry Researched named after O.N. Sokolovsky” (Laktionova et al., 2012), among other properties has extensive data on texture and bulk density for more than 2000 profiles, less on organic carbon content, and almost no data on saturated hydraulic conductivity (Ksat). The most probable ranges of Ksat for most types of Ukrainian soils are given in the Atlas of natural conditions and natural resources of the Ukrainian SSR (“Pochvenno-meliorativnoye rayonirovaniye. Masshtab 1:4000000,” 1978), however, the data doesn’t present Ksat for different textures inside one soil type. To fill this gap, the best solution is the applying of pedotransfer function (PTF). The purpose of this work is to synthesize the most realistic Ksat of the main soil groups of Ukraine, corresponding to a scale map of 1:2 500 000 (Krupskiy, 1977), as well as their genetic horizons, on the basis of calculated and experimental values available in the literature. Material and methods. Ten PTFs used in the study are based on regression equations (Cosby et al., 1984; Saxton & Rawls, 2006; Weynants et al., 2009; Wösten et al., 1999), decision tree (Tóth et al., 2015), or neural network (Zhang & Schaap, 2017). Ksat was estimated for 942 horizons of 171 profiles which represented all 40 soil groups (corresponding to the legend of 1:2 500 000 map) of Ukraine according to Dokuchaev classification. Results. Wösten and Rosetta3 PTFs are determined as the most relevant by comparing the calculated Ksat values with the available data of the bottom (horizons A2, B, C) and top (A0, A1) soil layers of Ukraine. In particular, they are relevant for widespread soils such as Soddy podzolic soils (WRB – Eutric podzoluvisols), dark gray podzolized soils (Phaeozems Albic), chernozems podzolized (Chernozems Chernic), chernozems southern (Chernozems Calcic), meadow-chernozemic soils (Phaeozems Haplic), dark chestnut and chestnut soils (Kastanozems Haplic and Kastanozems Luvic), meadow soils (Umbrisols Gleic, Fluvisols Dystrict, Fluvisols Eutryc, Leptosols Umbric), mountain soils (Cambisols), and top layer of Chernozems ordinary (Chernozems Chernic). Unfortunately, all ten PTFs underestimate 2-4 times Ksat of bottom layer of ordinary and typical chernozems (Chernozems Chernic) and overestimate 2-5 times for relatively impermeable horizons (< 2 mm/h). Conclusions. Based on the calculated and experimental values, the map of Ksat of the top and bottom soil layers was obtained. Sandy soils, common in Polissia, have the highest filtration rate. Ksat of loam and clay soils of forest-steppe and steppe can differ between different types by an order. The highest Ksat have soils with high structural properties (Chernozems Luvic, Chernozems Chernic). The lowest Ksat (0.2-3 mm/h) have Phaeozems Sodic, Solonetz, Solonchaks, Planosols Albic, and bottom layer of soddy manly gley (Arenosols Protic/ Haplic) and loamy soddy podzolic soils (Albeluvisols Umbric). The estimated values should be considered as the most probable because Ksat depends on landscape location of soil profile, tillage operations, and soil temperate. The results are acceptable to use in hydrological calculations and modeling.


Author(s):  
E.O. Ogundipe

Soil properties are important to the development of agricultural crops. This study determined some selected soil properties of a drip irrigated tomato (Lycopersicon esculentum M.) field at different moisture regime in South-Western Nigeria. The experiment was carried out using Randomized Complete Block Design with frequency and depth of irrigation application as the main plot and sub-plot, respectively in three replicates. Three frequencies (7, 5 and 3 days) and three depths equivalent to 100, 75 and 50% of water requirement were used. Undisturbed and disturbed soil samples were collected from 0-5, 5-10, 10-20 and 20-30 cm soil layers for the determination of some soil properties (soil texture, organic matter content, bulk density, infiltration rate and saturated hydraulic conductivity) were determined using standard formulae. Soil Water Content (SWC) monitoring was conducted every two days using a gravimetric technique. The soil texture was sandy loam for all the soil depths; average value of soil organic matter was highest (1.8%) in the 0-5 cm surface layer and decreased with soil depth; the soil bulk density value before and after irrigation experiment ranged from 1.48 and 1.73 g/cm3 and 1.5 and 1.76 g/cm3, respectively; there was a rapid reduction in the initial infiltration and final infiltration rate. Saturated hydraulic conductivity show similar trend although the 20-30 cm layer had the lowest value (50.84 mm/h); the SWC affect bulk density during the growing season. The study showed that soil properties especially bulk density and organic matter content affect irrigation water movement at different depth..


2020 ◽  
Author(s):  
Martine van der Ploeg ◽  
Attila Nemes

&lt;p&gt;Soil hydro-physical properties &amp;#8212;such as soil water retention, (un)saturated hydraulic conductivity, shrinkage and swelling, organic matter content, texture (particle distribution), structure (soil aggregation/pore structure)and bulk density&amp;#8212; are used in many sub(surface) modeling applications. Reliable soil-hydrophysical properties are key to proper predictions with such models, yet the harmonization and standardization of these properties has not received much attention. Lack of harmonization and standardization may lead to heterogeneity in data as a result of differences in methodologies, rather than real landscape heterogeneity. A need and scope has been identified to better harmonize, innovate, and standardize methodologies regarding measuring soil hydraulic properties that form the information base of many derived products in support of EU policy. With this identified need in mind the Soil Program on Hydro-Physics via International Engagement (SOPHIE) was initiated in 2017. Besides developing new activities that may advise future measurements, we also explore historic data and metadata and mine its relevant contents. The European Hydro-pedological Data Inventory (EU-HYDI), the largest European database on measured soil hydrophysical properties, is &amp;#8211; to date &amp;#8211; rather under-explored in this sense, which served as motivation for this work.&lt;/p&gt;&lt;p&gt;From EU-HYDI we selected those records that were complete for soil texture, bulk density and organic matter, and fitted pedo-transfer functions separately for particular water retention points (at heads of 0, 2.5, 10, 100, 300, 1000, 3000, 15000 cm) and saturated hydraulic conductivity by multi-linear regression. We then subtracted the observed retention and hydraulic conductivity values from their estimated counterparts, and grouped the residuals by measurement methodologies. The results show that there can be significant differences between different methodologies and sample sizes used to obtain the water retention and hydraulic conductivity in the laboratory. The results thus show that the EU-data that may underlie large scale modelling may introduce errors in the forcing data that are attributed to a lack of harmonization and standardization in currently used measurement protocols.&lt;/p&gt;


1999 ◽  
Vol 79 (3) ◽  
pp. 399-409 ◽  
Author(s):  
J. M. Cisneros ◽  
J. J. Cantero ◽  
A. Cantero

Land use and grazing regime can influence the dynamic of soil water and salt in humid areas. In Central Argentina, more than 2 ×106 ha are subjected to either permanent or cyclical processes of land salinization, alkalinization, flooding and sedimentation. In this region, the natural vegetation is the principal resource on which most systems of animal production are based. The objective of this study was to evaluate the effects of plant cover and grazing over some hydrophysical properties of three saline-sodic soils (two Gleic Solonetz in duripan phase and one Mollic Solonetz in fragipan phase), within a catena sequence. The effects on bulk density, saturated hydraulic conductivity, infiltration runoff, superficial salt accumulation and soil salinity distribution were determined in both bare and covered soil conditions, inside and outside of grazing exclosures. The results showed increased bulk density of topsoil for bare conditions, while saturated hydraulic conductivity did not show significant differences. In soils without any cover, the infiltration decreased significantly. Consequently, the runoff coefficient and salinity were greater, as indicated by significant salt accumulation in the topsoil. The soil profile salinity was reduced as a function of exclosure time, showing a trend toward desalinization resulting from a combined effect of soil cover and changes in intensity of land use. A conceptual model of salt and water dynamics in the soil profile for the landscape scale is postulated. The role of vegetation in regulating water and salt movement in poorly drained areas is emphasised as a basis for the development of management strategies. Key words: Saline and sodic soils, infiltration, runoff, grazing, exclosure, model


Sign in / Sign up

Export Citation Format

Share Document