scholarly journals Thermal conductivity of single-crystal brucite at high pressures with implications for thermal anomaly in the shallow lower mantle

2021 ◽  
2000 ◽  
Vol 626 ◽  
Author(s):  
Antje Mrotzek ◽  
Kyoung-Shin Choi ◽  
Duck-Young Chung ◽  
Melissa A. Lane ◽  
John R. Ireland ◽  
...  

ABSTRACTWe present the structure and thermoelectric properties of the new quaternary selenides K1+xM4–2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22. The compounds K1+xM4-2xBi7+xSe15 (M= Sn, Pb) crystallize isostructural to A1+xPb4-2xSb7+xSe15 with A = K, Rb, while K1-xSn5-xBi11+xSe22 reveals a new structure type. In both structure types fragments of the Bi2Te3-type and the NaCl-type are connected to a three-dimensional anionic framework with K+ ions filled tunnels. The two structures vary by the size of the NaCl-type rods and are closely related to β-K2Bi8Se13 and K2.5Bi8.5Se14. The thermoelectric properties of K1+xM4-2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22 were explored on single crystal and ingot samples. These compounds are narrow gap semiconductors and show n-type behavior with moderate Seebeck coefficients. They have very low thermal conductivity due to an extensive disorder of the metal atoms and possible “rattling” K+ ions.


2020 ◽  
Author(s):  
Kenji Ohta ◽  
Kei Hirose

Abstract Precise determinations of the thermal conductivity of iron alloys at high pressures and temperatures are essential for understanding the thermal history and dynamics of the metallic cores of the Earth. We review relevant high-pressure experiments using a diamond-anvil cell and discuss implications of high core conductivity for its thermal and compositional evolution.


1993 ◽  
Vol 70 (24) ◽  
pp. 3764-3767 ◽  
Author(s):  
Lanhua Wei ◽  
P. K. Kuo ◽  
R. L. Thomas ◽  
T. R. Anthony ◽  
W. F. Banholzer

Author(s):  
Chongjian Zhou ◽  
Yong Kyu Lee ◽  
Yuan Yu ◽  
Sejin Byun ◽  
Zhong-Zhen Luo ◽  
...  

AbstractThermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m–1 K–1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material.


Author(s):  
Innokenty Kantor ◽  
Alexander Kurnosov ◽  
Catherine McCammon ◽  
Leonid Dubrovinsky

AbstractA high-pressure quasi-single crystal X-ray diffraction study of a synthetic iron oxide Fe


2021 ◽  
Author(s):  
Meryem Berrada ◽  
Richard Secco ◽  
Wenjun Yong

<p>Recent theoretical studies have tried to constrain Mercury’s internal structure and composition using thermal evolution models. The presence of a thermally stratified layer of Fe-S at the top of an Fe-Si core has been suggested, which implies a sub-adiabatic heat flow on the core side of the CMB. In this work, the adiabatic heat flow at the top of the core was estimated using the electronic component of thermal conductivity (k<sub>el</sub>), a lower bound for thermal conductivity. Direct measurements of electrical resistivity (ρ) of Fe-8.5wt%Si at core conditions can be related to k<sub>el</sub> using the Wiedemann-Franz law. Measurements were carried out in a 3000 ton multi-anvil press using a 4-wire method. The integrity of the samples at high pressures and temperatures was confirmed with electron-microprobe analysis of quenched samples at various conditions. Unexpected behaviour at low temperatures between 6-8 GPa may indicate an undocumented phase transition. Measurements of ρ at melting seem to remain constant at 127 µΩ·cm from 10-24 GPa, on both the solid and liquid side of the melting boundary. The adiabatic heat flow at the core side of Mercury’s core-mantle boundary is estimated between 21.8-29.5 mWm<sup>-2</sup>, considerably higher than most models of an Fe-S or Fe-Si core yet similar to models of an Fe core. Comparing these results with thermal evolution models suggests that Mercury’s dynamo remained thermally driven up to 0.08-0.22 Gyr, at which point the core became sub-adiabatic and stimulated a change from dominant thermal convection to dominant chemical convection arising from the growth of an inner core. Simply considering the internal structure of Mercury, these results support the capture of Mercury into a 3:2 resonance orbit during the thermally driven era of the dynamo.</p>


2013 ◽  
Vol 55 (1) ◽  
pp. 235-239 ◽  
Author(s):  
A. V. Inyushkin ◽  
A. N. Taldenkov ◽  
A. V. Gusev ◽  
A. M. Gibin ◽  
V. A. Gavva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document