scholarly journals Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal

Author(s):  
Chongjian Zhou ◽  
Yong Kyu Lee ◽  
Yuan Yu ◽  
Sejin Byun ◽  
Zhong-Zhen Luo ◽  
...  

AbstractThermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m–1 K–1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material.

2021 ◽  
Vol 7 (20) ◽  
pp. eabe6000
Author(s):  
Lin Yang ◽  
Madeleine P. Gordon ◽  
Akanksha K. Menon ◽  
Alexandra Bruefach ◽  
Kyle Haas ◽  
...  

Organic-inorganic hybrids have recently emerged as a class of high-performing thermoelectric materials that are lightweight and mechanically flexible. However, the fundamental electrical and thermal transport in these materials has remained elusive due to the heterogeneity of bulk, polycrystalline, thin films reported thus far. Here, we systematically investigate a model hybrid comprising a single core/shell nanowire of Te-PEDOT:PSS. We show that as the nanowire diameter is reduced, the electrical conductivity increases and the thermal conductivity decreases, while the Seebeck coefficient remains nearly constant—this collectively results in a figure of merit, ZT, of 0.54 at 400 K. The origin of the decoupling of charge and heat transport lies in the fact that electrical transport occurs through the organic shell, while thermal transport is driven by the inorganic core. This study establishes design principles for high-performing thermoelectrics that leverage the unique interactions occurring at the interfaces of hybrid nanowires.


Author(s):  
Hohyun Lee ◽  
Daryoosh Vashaee ◽  
Xiaowei Wang ◽  
Giri Joshi ◽  
Gaohua Zhu ◽  
...  

Direct energy conversion between heat and electrical energy based on thermoelectric effects is attractive for potential applications in waste heat recovery and environmentally-friendly refrigeration. The energy conversion efficiency depends on the dimensionless figure of merit of thermoelectric materials, ZT, which is proportional to the electrical conductivity, the square of the Seebeck coefficient, and the inverse of the thermal conductivity. Currently, the low ZT values of available materials restrict the applications of this technology. However, significant enhancements in ZT were recently reported in nanostructured materials such as superlattices mainly due to their low thermal conductivities. According to recent studies, the reduced thermal conductivity of nanostructures is attributed to the large number of interfaces at which phonons are scattered. Based on this idea, nanocomposites are expected to have a lower thermal conductivity than their bulk counterparts with low fabrication cost just by mixing nano sized particles. In this work, we will discuss mechanisms of thermoelectric transport via modeling and provide experimental evidence on the enhancement of thermoelectric figure of merit in SiGe-based nanocomposites.


Author(s):  
Muhammad Omer Khan ◽  
Ellen Chan ◽  
Siu N. Leung ◽  
Hani Naguib ◽  
Francis Dawson ◽  
...  

This paper studies the development of new multifunctional liquid crystal polymeric composites filled with graphene nano platelets (GNPs) for electronic packaging applications. A series of parametric studies were conducted to study the effect of GNP content on the thermal conductivity of LCP-based nanocomposites. Graphene, ranging from 10 wt. % to 50 wt. %, were melt-compounded with LCP using a twin-screw compounder. The extrudates were ground and compression molded into small disc-shaped specimens. The thermal conductivity of LCP matrix was observed to have increased by more than 1000% where as the electrical conductivity increased by 13 orders of magnitude with the presence of 50 wt% GNP fillers. The morphology of the composites was analyzed using SEM micrographs to observe the dispersion of filler within the matrix. These thermally conductive composites represent potential cost-effective materials to injection mold three-dimensional, net-shape microelectronic enclosures with superior heat dissipation performance.


1997 ◽  
Vol 478 ◽  
Author(s):  
T. Caillat ◽  
A. Borshchevsky ◽  
J. -P. Fleurial

Abstractβ-Zn4Sb3 was recently identified at the Jet Propulsion Laboratory as a new high performance p-type thermoelectric material with a maximum dimensionless thermoelectric figure of merit ZT of 1.4 at a temperature of 673K. A usual approach, used for many state-of-the-art thermoelectric materials, to further improve ZT values is to alloy β-Zn4Sb3 with isostructural compounds because of the expected decrease in lattice thermal conductivity. We have grown Zn4−xCdxSb3 crystals with 0.2≤x<1.2 and measured their thermal conductivity from 10 to 500K. The thermal conductivity values of Zn4−xCdxSb3 alloys are significantly lower than those measured for β-Zn4Sb3 and are comparable to its calculated minimum thermal conductivity. A strong atomic disorder is believed to be primarily at the origin of the very low thermal conductivity of these materials which are also fairly good electrical conductors and are therefore excellent candidates for thermoelectric applications.


Author(s):  
Tyler J. Sonsalla ◽  
Leland Weiss ◽  
Arden Moore ◽  
Adarsh Radadia ◽  
Debbie Wood ◽  
...  

Waste heat is a major energy loss in manufacturing facilities. Thermally conductive polymer composite heat exchangers could be utilized in the ultralow temperature range (below 200° C) for waste heat recovery. Fused deposition modeling (FDM), also known as three-dimensional (3-D) printing, has become an increasingly popular technology and presents one approach to fabrication of these exchangers. The primary challenge to the use of FDM is the low-conductivity of the materials themselves. This paper presents a study of a new polymer-Zn composite designed for enhanced thermal conductivity for usage in FDM systems. Thermal properties were assessed in addition to basic printability. Filler volume percentages were varied to study the effects on material properties. Scanning electron microscope (SEM) images were taken of the 3-D printed test pieces to determine filler orientation and filler distribution. Lastly, experimentally obtained thermal conductivity values were compared to the theoretical thermal conductivity values predicted from the Lewis-Nielsen model.


2006 ◽  
Vol 46 ◽  
pp. 104-110 ◽  
Author(s):  
Gang Chen

Energy transport in nanostructures differs significantly from macrostructures because of classical and quantum size effects on energy carriers. Experimental results show that the thermal conductivity values of nanostructures such as superlattices are significantly lower than that of their bulk constituent materials. The reduction in thermal conductivity led to a large increase in the thermoelectric figure of merit in several superlattice systems. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices that convert waste heat into electricity. Superlattices grown by thin-film deposition techniques, however, are not suitable for large scale applications. Nanocomposites represent one approach that can lead to high thermoelectric figure merit. This paper reviews the current understanding of thermal conductivity reduction mechanisms in superlattices and presents theoretical studies on thermoelectric properties in semiconducting nanocomposites, aiming at developing high efficiency thermoelectric energy conversion materials.


2021 ◽  
Author(s):  
◽  
Michael Ng

<p>Energy consumption worldwide is constantly increasing, bringing with it the demand for low cost, environmentally friendly and efficient energy technologies. One of these promising technologies is thermoelectrics in which electric power is harvested from waste heat energy. The efficiency of a thermoelectric device is determined by the dimensionless figure of merit ZT = σS²T/k where σ is the electrical conductivity, S is the thermopower, k is the thermal conductivity, and T is the average temperature. In this thesis we investigate the use of nanostructuring, which has been known to lead to significant reduction in the lattice thermal conductivity to maximise the figure of merit.  One of the most successful bulk thermoelectric materials is Bi₂Te₃, with a ZT of unity at room temperature. Here we investigate the effects of nanostructuring on the thermoelectric properties of Bi₂Te₃. Sub-100 nm ₂Te₃ nanoparticles were successfully synthesized and the figure of merit was found to be ZT ~ 5X10⁻⁵ at room temperature. The effect of a ligand exchange treatment to replace the long chain organic ligand on the as-synthesized nanoparticles with a short chain alkyl ligand was explored. After ligand exchange treatment with hydrazine the figure of merit of sub-100 nm Bi₂Te₃ was found to increase by two fold to ZT ~ 1X10⁻⁴ at room temperature. Overall the figure of merit is low compared to other nanostructured Bi₂Te₃, this was attributed to the extremely low electrical conductivity. The thermopower and thermal conductivity were found to be ~96 μVK⁻¹ and ~0.38 Wm⁻¹ K⁻¹ at 300 K respectively, which show improvements over other nanostructured Bi₂Te₃.  Further optimisation of the figure of merit was also investigated by incorporating Cu, Ni and Co dopants. The most successful of these attempts was Co in which 14.5% Co relative to Bi was successfully incorporated into sub-100 nm Bi₂Te₃. The figure of merit of nanostructured Bi₁.₇₁Co₀.₂₉Te₁.₇₁ alloy was found to increase by 40% to a ZT ~ 1.4X10⁻⁴ at room temperature. Although overall the figure of merit is low, the effect of Co alloying and hydrazine treatment shows potential as a route to optimise the figure of merit.  A potential novel material for thermoelectrics applications is inorganicorganic perovskite single crystals. Here we report a synthetic strategy to successfully grow large millimetre scale single crystals of MAPbBr₃₋xClx, FAPbBr₃₋xClx, and MAPb₁-xSnxBr₃ (MA = methylammonium and FA = formamidinium) using inverse temperature crystallisation (ITC) in a matter of days. This is the first reported case of mixed Br/Cl single crystals with a FA cation and mixed Pb/Sn based perovskites grown using ITC. The bandgap of these single crystals was successfully tuned by altering the halide and metal site composition. It was found that single crystals of FAPbBr₃₋xClx were prone to surface degradation with increased synthesis time. This surface degradation was observed to be reversible by placing the single crystals in an antisolvent such as chloroform.  A tentative model was proposed to analyse the IV characteristics of the single crystal perovskites in order to extract mobilities and diffusion lengths. The MAPbBr₃ and MAPbBr₂.₅Cl₀.₅ single crystal mobilities were found to be between 30-390 cm² V⁻¹ s⁻¹ and 10-100 cm² V⁻¹ s⁻¹ respectively, the diffusion lengths were found to be between 2-8 μm and 1-4 μm respectively. This is an improvement over polycrystalline thin film perovskites and comparable to other single crystal perovskites. The conductance of MAPb₁-xSnxBr₃ based perovskites was found to increase by 2 orders of magnitude even with just 1% of Sn incorporated. The thermal conductivity of MAPbBr₃ single crystals was found to be ~1.12 Wm⁻¹ K⁻¹ at room temperature which is reasonable low for single crystals, however no other thermoelectric properties could be measured due to the self cleaving nature of the single crystals with decreasing temperature and the high resistivity of the material.</p>


2007 ◽  
Vol 129 (4) ◽  
pp. 469-472 ◽  
Author(s):  
Hong He ◽  
Renli Fu ◽  
Yanchun Han ◽  
Yuan Shen ◽  
Deliu Wang

Traditionally, large quantities of ceramic fillers are added to polymers in order to obtain high thermally conductive polymer composites, which are used for electronic encapsulants. However, that is not cost effective enough. In this study, Si3N4 particle filled epoxy composite with a novel structure was fabricated by a processing method and structure design. Epoxy resin used in particle form was obtained by premixing and crushing. Different particle sizes were selected by sieving. High thermal conductivity was achieved at relative low volume fraction of the filler. The microstructure of the composites indicates that a continuous network is formed by the filler, which mainly completes the heat conduction. Thermal conductivity of the composites increases as the filler content increases, and the samples exhibit a highest thermal conductivity of 1.8W∕mK at 30% volume fraction of the filler in the composites using epoxy particles of 2mm. The composites show low dielectric constant and low dielectric loss.


2020 ◽  
Vol 2020 (1) ◽  
pp. 000277-000281
Author(s):  
Tzu-Hsuan Cheng ◽  
Kenji Nishiguchi ◽  
Yoshi Fukawa ◽  
B. Jayant Baliga ◽  
Subhashish Bhattacharya ◽  
...  

Abstract Silicon-Carbide (SiC) power devices have become a promising option for traditional Silicon (Si) due to the superior material properties. To fully take advantage of the SiC devices, a high-performance power device packaging solution is necessary. This study proposes a cost-effective double-sided cooled (DSC) 1.2 kV SiC half-bridge power module using organic epoxy-resin composite dielectric (ERCD) substrates. The high mechanical and thermal performance of the power module is achieved by the low-modulus, moderate thermal conductivity, and relatively thin (120 μm) layer of ERCD material compared with traditional metal-clad ceramic approaches. This novel organic dielectric can withstand high voltage (5 kV @ 120 μm) and operate up to 250°C continuously, which is indispensable for high power applications. The thermal modeling results show that the equivalent thermal resistance junction-to-case (Rjc_eq) of the DSC power module using dual direct bonded copper (DBC) is 17% higher than the dual ERCD configuration. Furthermore, a non-insulated DSC power module concept is proposed for maximizing thermal performance by considering thermal vias in the ERCD substrate and direct-soldered heat sink. A thought process for optimization of thermal via design is demonstrated and it shows up to 24% of improvement on thermal performance compared with the insulated DSC power module.


Author(s):  
Shidong Wang ◽  
Natalio Mingo

We theoretically find that embedding silicide nanoparticles in SixGe1-x alloys is able to considerably improve the figure of merit (ZT). We have computed the thermal conductivity as a function of the sizes of NiSi2 and CoSi2 nanoparticles. We find that the optimal nanoparticle diameters minimizing the composite’s thermal conductivity are 6.9 nm for NiSi2 and 12.6 nm for CoSi2 at room temperature. We provide validity ranges of nanoparticle volume fractions that will not reduce the thermoelectric power factor, but will considerably decrease the thermal conductivity. Embedding NiSi2 or CoSi2 nanoparticles in SixGe1-x may lead to a 5-fold increase of figure of merit (ZT ∼ 0.5) at room temperature and 2.8 times increase (ZT ∼ 2.0) at 900 K. The proposed materials with high figures of merit are promising candidates to be used in integrated micro refrigerators in chips and thermoelectric power generation and waste heat recovery.


Sign in / Sign up

Export Citation Format

Share Document