Quantitative Identification of Constituent Phases in a Nd-Fe-B Sintered Magnet and Temperature-Dependent Change in the Electron Density of Nd 2Fe 14B Studied by Synchrotron X-Ray Diffraction

2019 ◽  
Author(s):  
Hiroyuki Okazaki ◽  
David Billington ◽  
Naruki Tsuji ◽  
Wakana Ueno ◽  
Yoshinori Kotani ◽  
...  
Author(s):  
Simon Engelbert ◽  
Rolf-Dieter Hoffmann ◽  
Jutta Kösters ◽  
Steffen Klenner ◽  
Rainer Pöttgen

Abstract The structures of the equiatomic stannides RERhSn with the smaller rare earth elements Y, Gd-Tm and Lu were reinvestigated on the basis of temperature-dependent single crystal X-ray diffraction data. GdRhSn crystallizes with the aristotype ZrNiAl at 293 and 90 K. For RE = Y, Tb, Ho and Er the HP-CeRuSn type (approximant with space group R3m) is already formed at room temperature, while DyRhSn adopts the HP-CeRuSn type below 280 K. TmRhSn and LuRhSn show incommensurate modulated variants with superspace groups P31m(1/3; 1/3; γ) 000 (No. 157.1.23.1) (γ = 3/8 for TmRhSn and γ = 2/5 for LuRhSn). The driving force for superstructure formation (modulation) is a strengthening of Rh–Sn bonding. The modulation is expressed in a 119Sn Mössbauer spectrum of DyRhSn at 78 K through line broadening.


2013 ◽  
Vol 68 (9) ◽  
pp. 971-978 ◽  
Author(s):  
Inga Schellenberg ◽  
Ute Ch. Rodewald ◽  
Christian Schwickert ◽  
Matthias Eul ◽  
Rainer Pöttgen

The ternary antimonides RE4T7Sb6 (RE=Gd-Lu; T =Ru, Rh) have been synthesized from the elements by arc-melting and subsequent annealing in an induction furnace. The samples have been characterized by powder X-ray diffraction. Four structures were refined on the basis of single-crystal X-ray diffractometer data: U4Re7Si6 type, space group Im3m with a=862.9(2) pm, wR2=0.0296, 163 F2 values for Er4Ru7Sb6; a=864.1(1) pm, wR2=0.1423, 153 F2 values for Yb4Ru7Sb6; a=872.0(2) pm, wR2=0.0427, 172 F2 values for Tb4Rh7Sb6; and a=868.0(2) pm, wR2=0.0529, 154 F2 values for Er4Rh7Sb6, with 10 variables per refinement. The structures have T1@Sb6 octahedra and slightly distorted RE@T26Sb6 cuboctahedra as building units. The distorted cuboctahedra are condensed via all trapezoidal faces, and this network leaves octahedral voids for the T1 atoms. The ruthenium-based series of compounds was studied by temperature-dependent magnetic susceptibility measurements. Lu4Ru7Sb6 is Pauli-paramagnetic. The antimonides RE4Ru7Sb6 with RE=Dy, Ho, Er, and Tm show Curie-Weiss paramagnetism. Antiferromagnetic ordering occurs at 10.0(5), 5.1(5) and 4.0(5) K for Dy4Ru7Sb6, Ho4Ru7Sb6 and Er4Ru7Sb6, respectively, while Tm4Ru7Sb6 remains paramagnetic. Yb4Ru7Sb6 is an intermediate-valent compound with a reduced magnetic moment of 3.71(1) μB per Yb as compared to 4.54 μB for a free Yb3+ ion


Author(s):  
Anatoly A. Udovenko ◽  
Alexander A. Karabtsov ◽  
Natalia M. Laptash

A classical elpasolite-type structure is considered with respect to dynamically disordered ammonium fluoro-(oxofluoro-)metallates. Single-crystal X-ray diffraction data from high quality (NH4)3HfF7 and (NH4)3Ti(O2)F5 samples enabled the refinement of the ligand and cationic positions in the cubic Fm \bar 3 m (Z = 4) structure. Electron-density atomic profiles show that the ligand atoms are distributed in a mixed (split) position instead of 24e. One of the ammonium groups is disordered near 8c so that its central atom (N1) forms a tetrahedron with vertexes in 32f. However, a center of another group (N2) remains in the 4b site, whereas its H atoms (H2) occupy the 96k positions instead of 24e and, together with the H3 atom in the 32f position, they form eight spatial orientations of the ammonium group. It is a common feature of all ammonium fluoroelpasolites with orientational disorder of structural units of a dynamic nature.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4227
Author(s):  
Alessandro Cossard ◽  
Silvia Casassa ◽  
Carlo Gatti ◽  
Jacques K. Desmarais ◽  
Alessandro Erba

The chemistry of f-electrons in lanthanide and actinide materials is yet to be fully rationalized. Quantum-mechanical simulations can provide useful complementary insight to that obtained from experiments. The quantum theory of atoms in molecules and crystals (QTAIMAC), through thorough topological analysis of the electron density (often complemented by that of its Laplacian) constitutes a general and robust theoretical framework to analyze chemical bonding features from a computed wave function. Here, we present the extension of the Topond module (previously limited to work in terms of s-, p- and d-type basis functions only) of the Crystal program to f- and g-type basis functions within the linear combination of atomic orbitals (LCAO) approach. This allows for an effective QTAIMAC analysis of chemical bonding of lanthanide and actinide materials. The new implemented algorithms are applied to the analysis of the spatial distribution of the electron density and its Laplacian of the cesium uranyl chloride, Cs2UO2Cl4, crystal. Discrepancies between the present theoretical description of chemical bonding and that obtained from a previously reconstructed electron density by experimental X-ray diffraction are illustrated and discussed.


2019 ◽  
Vol 2019 (6) ◽  
pp. 875-884 ◽  
Author(s):  
Maxim G. Chegerev ◽  
Alexandr V. Piskunov ◽  
Kseniya V. Tsys ◽  
Andrey G. Starikov ◽  
Klaus Jurkschat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document