The Role of Angiotensin Converting Enzyme 2 in Coronaviruses/Influenza Viruses and Cardiovascular Disease

Author(s):  
Li Chen ◽  
Guang Hao
Author(s):  
Bogdan- Alexandru Hagiu

The role of the angiotensin-converting enzyme 2 (ACE2) receptor in SARS-CoV-2 virus infection and disease progression is complex, and the interaction with exercise is being investigated. However, the virus binds to ACE2. The paper hypothesizes that exceeding the lactic threshold during exercise would cause, through hypoxia, over expression of ACE2. Vasodilators would prevent hypoxia and implicitly this fact. To the complexity of the phenomenon is added the possibility of preventing severe forms of COVID-19 through mitochondrial biogenesis induced by exercise. As a result, the paper examines the ability of antihypertensives used in combination with exercise to treat cardiovascular disease to prevent ACE2 over expression and to stimulate mitochondrial biogenesis. Future research is needed, but it is worth mentioning that some such hypertensives have been proposed for the treatment of COVID-19.


2020 ◽  
Vol 116 (12) ◽  
pp. 1932-1936 ◽  
Author(s):  
Li Chen ◽  
Guang Hao

Abstract Angiotensin-converting enzyme 2 (ACE2) has emerged as a key regulator of the renin–angiotensin system in cardiovascular (CV) disease and plays a pivotal role in infections by coronaviruses and influenza viruses. The present review is primarily focused on the findings to indicate the role of ACE2 in the relationship of coronaviruses and influenza viruses to CV disease. It is postulated that the risk of coronavirus or influenza virus infection is high, at least partly due to high ACE2 expression in populations with a high CV risk. Coronavirus and influenza virus vaccine usage in high CV risk populations could be a potential strategy to prevent both CV disease and coronavirus/influenza virus infections.


2020 ◽  
Vol 134 (7) ◽  
pp. 747-750 ◽  
Author(s):  
Rhian M. Touyz ◽  
Hongliang Li ◽  
Christian Delles

Abstract Angiotensin converting enzyme 2 (ACE2) is the major enzyme responsible for conversion of Ang II into Ang-(1-7). It also acts as the receptor for severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2, which causes Coronavirus Disease (COVID)-19. In recognition of the importance of ACE2 and to celebrate 20 years since its discovery, the journal will publish a focused issue on the basic science and (patho)physiological role of this multifunctional protein.


Toxins ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 742
Author(s):  
Bogusz Trojanowicz ◽  
Christof Ulrich ◽  
Matthias Girndt

Apelin peptides (APLN) serve as second substrates for angiotensin-converting enzyme 2 (ACE2) and, in contrast to angiotensin II (AngII), exert blood-pressure lowering and vasodilatation effects through binding to G-coupled APLN receptor (APLNR). ACE2-mediated cleavage of the APLN may reduce its vasodilatory effects, but decreased ACE2 may potentiate the hypotensive properties of APLN. The role of APLN in uremia is unclear. We investigated the correlations between serum-APLN, leucocytic APLNR, and ACE2 in 32 healthy controls (NP), 66 HD, and 24 CKD3–5 patients, and the impact of APLN peptides on monocytic behavior and ACE2 expression under uremic conditions in vitro. We observed that serum APLN and leucocytic APLNR or SLCO2B1 were significantly elevated in uremic patients and correlated with decreased ACE2 on uremic leucocytes. APLN-treated THP-1 monocytes revealed significantly increased APLNR and ACE2, and reduced TNFa, IL-6, and MCSF. Uremic toxins induced a dramatic increase of miR-421 followed by significant reduction of ACE2 transcripts, partially counteracted with APLN-13 and -36. APLN-36 triggered the most potent transmigration and reduction of endothelial adhesion. These results suggest that although APLN peptides may partly protect against the decay of monocytic ACE2 transcripts, uremic milieu is the most dominant modulator of local ACE2, and likely to contribute to the progression of atherosclerosis.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Nisha Sharma ◽  
Anil Bhanudas Gaikwad

Abstract Background and Aims In clinical settings, diabetics remain on higher risk of ischemic renal injury (IRI) than nondiabetic patients. In addition, IRI predisposes distant organs to dysfunction such as neurological impairments via activation of the pressor arm of renin-angiotensin system (RAS). In contrast, the role of depressor arm of RAS on IRI-associated neurological sequalae remains elusive. Hence, this study explored the role of angiotensin II type 2 receptor (AT2R) and angiotensin-converting enzyme 2 (ACE2) in IRI-associated neurological dysfunctions under nondiabetic (ND) and diabetes mellitus (DM) condition. Method Type 1 diabetes was induced by injecting streptozotocin (55 mg/kg i.p.). ND and DM rats with bilateral IRI were treated with AT2R agonist-Compound 21 (C21) (0.3 mg/kg/day, i.p.) or ACE2 activator-Diminazene Aceturate (Dize), (5 mg/kg/day, p.o.) per se or in combination therapy. Behavioural, biochemical, and histopathological analysis were done to assess IRI-induced neurological impairment. Moreover, immunohistochemistry, ELISA and qRT-PCR experiments were conducted for molecular mechanism analysis. Result In ND and DM rats, IRI caused hippocampal complications as evidenced by increased MDA and nitrite levels, augmented inflammatory cytokines (granulocyte colony stimulating factor, glial fibrillary acidic protein), altered protein and mRNA expressions of Ang II, Ang-(1-7), AT1R, AT2R and MasR. In contrast, concomitant therapy of C21 and Dize effectively normalised aforementioned hippocampal alterations. The protective effect of combination therapy was exerted due to augmented protein and mRNA levels of depressor arm components. Conclusion The current study demonstrated the protective role of AT2R agonist and ACE2 activator in IRI-associated neurological dysfunction through preventing oxidative stress, inflammation and upregulating brain depressor arm of RAS under ND and DM conditions.


2020 ◽  
Vol 10 (18) ◽  
pp. 6224 ◽  
Author(s):  
Leonardo Mancini ◽  
Vincenzo Quinzi ◽  
Stefano Mummolo ◽  
Giuseppe Marzo ◽  
Enrico Marchetti

SARS-CoV-2 propagation in the world has led to rapid growth and an acceleration in the discoveries and publications of various interests. The main focus of a consistent number of studies has been the role of angiotensin-converting enzyme 2 (ACE2) in binding the virus and its role in expression of the inflammatory response after transmission. ACE2 is an enzyme involved in the renin–angiotensin system (RAS), whose key role is to regulate and counter angiotensin-converting enzyme (ACE), reducing the amount of angiotensin II and increasing angiotensin 1–7 (Ang1–7), making it a promising drug target for treating cardiovascular diseases. The classical RAS axis, formed by ACE, angiotensin II (Ang II), and angiotensin receptor type 1 (AT1), activates several cell functions and molecular signalling pathways related to tissue injury and inflammation. In contrast, the RAS axis composed of ACE2, Ang1–7, and Mas receptor (MasR) exerts the opposite effect concerning the inflammatory response and tissue fibrosis. Recent studies have shown the presence of the RAS system in periodontal sites where osteoblasts, fibroblasts, and osteoclasts are involved in bone remodelling, suggesting that the role of ACE2 might have a fundamental function in the under- or overexpression of cytokines such as interleukin-6 (IL-6), interleukin-7 (IL-7), tumour necrosis factor alpha (TNF-α), interleukin-2 (IL-2), interleukin-1 beta (IL-1β), monocyte chemoattractant protein-1 (MCP-1), and transforming growth factor-beta (TGF-β), associated with a periodontal disorder, mainly during coinfection with SARS-CoV-2, where ACE2 is underexpressed and cannot form the ACE2–Ang1–7–MasR axis. This renders the patient unresponsive to an inflammatory process, facilitating periodontal loss.


Sign in / Sign up

Export Citation Format

Share Document