scholarly journals Uremic Apelin and Leucocytic Angiotensin-Converting Enzyme 2 in CKD Patients

Toxins ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 742
Author(s):  
Bogusz Trojanowicz ◽  
Christof Ulrich ◽  
Matthias Girndt

Apelin peptides (APLN) serve as second substrates for angiotensin-converting enzyme 2 (ACE2) and, in contrast to angiotensin II (AngII), exert blood-pressure lowering and vasodilatation effects through binding to G-coupled APLN receptor (APLNR). ACE2-mediated cleavage of the APLN may reduce its vasodilatory effects, but decreased ACE2 may potentiate the hypotensive properties of APLN. The role of APLN in uremia is unclear. We investigated the correlations between serum-APLN, leucocytic APLNR, and ACE2 in 32 healthy controls (NP), 66 HD, and 24 CKD3–5 patients, and the impact of APLN peptides on monocytic behavior and ACE2 expression under uremic conditions in vitro. We observed that serum APLN and leucocytic APLNR or SLCO2B1 were significantly elevated in uremic patients and correlated with decreased ACE2 on uremic leucocytes. APLN-treated THP-1 monocytes revealed significantly increased APLNR and ACE2, and reduced TNFa, IL-6, and MCSF. Uremic toxins induced a dramatic increase of miR-421 followed by significant reduction of ACE2 transcripts, partially counteracted with APLN-13 and -36. APLN-36 triggered the most potent transmigration and reduction of endothelial adhesion. These results suggest that although APLN peptides may partly protect against the decay of monocytic ACE2 transcripts, uremic milieu is the most dominant modulator of local ACE2, and likely to contribute to the progression of atherosclerosis.

2020 ◽  
Author(s):  
Vincent J. Manna ◽  
Salvatore J. Caradonna

ABSTRACTCoronavirus Disease 2019 (COVID-19) is transmitted through respiratory droplets containing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) particles. Once inhaled, SARS-CoV-2 particles gain entry into respiratory ciliated cells by interacting with angiotensin converting enzyme 2 (ACE2). It is known that ACE2 functions within the renin-angiotensin system to regulate blood pressure, fluid homeostasis and inflammation. However, it is largely unknown what roles ACE2 has in ciliated cells of the airway. Therefore, understanding the function and nature of ACE2 within airway tissue has become an essential element in combatting the COVID-19 pandemic. Airway mucociliary tissue was generated in-vitro using primary human nasal epithelial cells isolated from nasal turbinates of donors and the air-liquid interface (ALI) model of differentiation. Using ALI tissue we cloned transcripts for three distinct variants of ACE2, one of which encodes the full-length ACE2 protein, the other two transcripts are truncated isoforms that had only been predicted to exist via sequence analysis software. We demonstrate that all three isoforms have the capacity to be glycosylated, a known modification of full-length ACE2. Immunofluorescence microscopy of individual ACE2 isoform transfected cells reveals distinct localization of variant 1 relative to X1 and X2. Double staining immunohistochemistry of ALI tissue using antibodies to either the N-term or C-term region of ACE2 revealed distinct and overlapping signals in the apical cytosol of ciliated cells. Most notably only the ACE2 C-term antibody displayed plasma-membrane localization in ciliated cells. We also observed a decrease in the total amount of ACE2 in ALI tissue derived from a 33 year-old male donor when compared to a 34 year-old female donor, thus there may be variation in the abundance of ACE2 protein in the airway among the population. Together, our data begins to highlight the dynamic status of the ACE2 protein in airway mucociliary tissue and we propose multiple ACE2 parameters that may impact an individual’s susceptibility to SARS-CoV-2. These parameters include the balance of cytosolic versus membrane bound ACE2, isoform expression levels, maintenance of post-translational modifications and the impact of genetic, environmental and lifestyle factors on these processes.


2021 ◽  
Vol 22 (15) ◽  
pp. 8226
Author(s):  
John Tsu-An Hsu ◽  
Chih-Feng Tien ◽  
Guann-Yi Yu ◽  
Santai Shen ◽  
Yi-Hsuan Lee ◽  
...  

Increasing evidence suggests that elderly people with dementia are vulnerable to the development of severe coronavirus disease 2019 (COVID-19). In Alzheimer’s disease (AD), the major form of dementia, β-amyloid (Aβ) levels in the blood are increased; however, the impact of elevated Aβ levels on the progression of COVID-19 remains largely unknown. Here, our findings demonstrate that Aβ1-42, but not Aβ1-40, bound to various viral proteins with a preferentially high affinity for the spike protein S1 subunit (S1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the viral receptor, angiotensin-converting enzyme 2 (ACE2). These bindings were mainly through the C-terminal residues of Aβ1-42. Furthermore, Aβ1-42 strengthened the binding of the S1 of SARS-CoV-2 to ACE2 and increased the viral entry and production of IL-6 in a SARS-CoV-2 pseudovirus infection model. Intriguingly, data from a surrogate mouse model with intravenous inoculation of Aβ1-42 show that the clearance of Aβ1-42 in the blood was dampened in the presence of the extracellular domain of the spike protein trimers of SARS-CoV-2, whose effects can be prevented by a novel anti-Aβ antibody. In conclusion, these findings suggest that the binding of Aβ1-42 to the S1 of SARS-CoV-2 and ACE2 may have a negative impact on the course and severity of SARS-CoV-2 infection. Further investigations are warranted to elucidate the underlying mechanisms and examine whether reducing the level of Aβ1-42 in the blood is beneficial to the fight against COVID-19 and AD.


2020 ◽  
Vol 134 (7) ◽  
pp. 747-750 ◽  
Author(s):  
Rhian M. Touyz ◽  
Hongliang Li ◽  
Christian Delles

Abstract Angiotensin converting enzyme 2 (ACE2) is the major enzyme responsible for conversion of Ang II into Ang-(1-7). It also acts as the receptor for severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2, which causes Coronavirus Disease (COVID)-19. In recognition of the importance of ACE2 and to celebrate 20 years since its discovery, the journal will publish a focused issue on the basic science and (patho)physiological role of this multifunctional protein.


2021 ◽  
Vol 2 (1) ◽  
pp. 16-27
Author(s):  
Zahra Sharifinia ◽  
◽  
Samira Asadi ◽  
Mahyar Irani ◽  
Abdollah Allahverdi ◽  
...  

Objective: The receptor-binding domain (RBD) of the S1 domain of the SARS-CoV- 2 Spike protein performs a key role in the interaction with Angiotensin-converting enzyme 2 (ACE2), leading to both subsequent S2 domain-mediated membrane fusion and incorporation of viral RNA in host cells. Methods: In this study, we investigated the inhibitor’s targeted compounds through existing human ACE2 drugs to use as a future viral invasion. 54 FDA approved drugs were selected to assess their binding affinity to the ACE2 receptor. The structurebased methods via computational ones have been used for virtual screening of the best drugs from the drug database. Key Findings: The ligands “Cinacalcet” and “Levomefolic acid” highaffinity scores can be a potential drug preventing Spike protein of SARS-CoV-2 and human ACE2 interaction. Levomefolic acid from vitamin B family was proved to be a potential drug as a spike protein inhibitor in previous clinical and computational studies. Besides that, in this study, the capability of Levomefolic acid to avoid ACE2 and Spike protein of SARS-CoV-2 interaction is indicated. Therefore, it is worth to consider this drug for more in vitro investigations as ACE2 and Spike protein inhibition candidate. Conclusion: The two Cinacalcet and Levomefolic acid are the two ligands that have highest energy binding for human ACE2 blocking among 54 FDA approved drugs.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (08) ◽  
pp. 16-24
Author(s):  
Mohammed Oday Ezzat ◽  
Basma M. Abd Razik ◽  
Kutayba F. Dawood

The prevalence of a novel coronavirus (2019-nCoV) in the last few months represents a serious threat as a world health emergency concern. Angiotensin-converting enzyme 2 (ACE2) is the host cellular receptor for the respiratory syndrome of coronavirus epidemic in 2019 (2019-nCoV). In this work, the active site of ACE2 is successfully located by Sitmap prediction tool and validated by different marketed drugs. To design and discover new medical countermeasure drugs, we evaluate a total of 184 molecules of 7-chloro-N-methylquinolin-4-amine derivatives for binding affinity inside the crystal structure of ACE2 located active site. A novel series of N-substituted 2,5-bis[(7-chloroquinolin-4-yl)amino]pentanoic acid derivatives is generated and evaluated for a prospect as a lead compound for (2019-nCoV) medication with a docking score range of (-10.60 to -8.99) kcal/mol for the highest twenty derivatives. Moreover, the ADME pharmaceutical properties were evaluated for further proposed experimental evaluation in vitro or in vivo


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Nisha Sharma ◽  
Anil Bhanudas Gaikwad

Abstract Background and Aims In clinical settings, diabetics remain on higher risk of ischemic renal injury (IRI) than nondiabetic patients. In addition, IRI predisposes distant organs to dysfunction such as neurological impairments via activation of the pressor arm of renin-angiotensin system (RAS). In contrast, the role of depressor arm of RAS on IRI-associated neurological sequalae remains elusive. Hence, this study explored the role of angiotensin II type 2 receptor (AT2R) and angiotensin-converting enzyme 2 (ACE2) in IRI-associated neurological dysfunctions under nondiabetic (ND) and diabetes mellitus (DM) condition. Method Type 1 diabetes was induced by injecting streptozotocin (55 mg/kg i.p.). ND and DM rats with bilateral IRI were treated with AT2R agonist-Compound 21 (C21) (0.3 mg/kg/day, i.p.) or ACE2 activator-Diminazene Aceturate (Dize), (5 mg/kg/day, p.o.) per se or in combination therapy. Behavioural, biochemical, and histopathological analysis were done to assess IRI-induced neurological impairment. Moreover, immunohistochemistry, ELISA and qRT-PCR experiments were conducted for molecular mechanism analysis. Result In ND and DM rats, IRI caused hippocampal complications as evidenced by increased MDA and nitrite levels, augmented inflammatory cytokines (granulocyte colony stimulating factor, glial fibrillary acidic protein), altered protein and mRNA expressions of Ang II, Ang-(1-7), AT1R, AT2R and MasR. In contrast, concomitant therapy of C21 and Dize effectively normalised aforementioned hippocampal alterations. The protective effect of combination therapy was exerted due to augmented protein and mRNA levels of depressor arm components. Conclusion The current study demonstrated the protective role of AT2R agonist and ACE2 activator in IRI-associated neurological dysfunction through preventing oxidative stress, inflammation and upregulating brain depressor arm of RAS under ND and DM conditions.


Sign in / Sign up

Export Citation Format

Share Document