scholarly journals The Functional Evolution of Termite Gut Microbiota

2021 ◽  
Author(s):  
Jigyasa Arora ◽  
Yukihiro Kinjo ◽  
Jan Šobotník ◽  
Aleš Buček ◽  
Crystal Clitheroe ◽  
...  
2021 ◽  
Author(s):  
Jigyasa Arora ◽  
Yukihiro Kinjo ◽  
Jan Šobotník ◽  
Aleš Buček ◽  
Crystal Clitheroe ◽  
...  

SUMMARYTermites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species, but remains largely unknown in other taxa. We intend to feel this gap and provide a global understanding of the functional evolution of termite gut microbiota. We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that key nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ∼150 million years ago. Therefore, the “world smallest bioreactor” has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Pritam Kundu ◽  
Bharat Manna ◽  
Subham Majumder ◽  
Amit Ghosh

Abstract The structural complexity of lignocellulosic biomass hinders the extraction of cellulose, and it has remained a challenge for decades in the biofuel production process. However, wood-feeding organisms like termite have developed an efficient natural lignocellulolytic system with the help of specialized gut microbial symbionts. Despite having an enormous amount of high-throughput metagenomic data, specific contributions of each individual microbe to achieve this lignocellulolytic functionality remains unclear. The metabolic cross-communication and interdependence that drives the community structure inside the gut microbiota are yet to be explored. We have contrived a species-wide metabolic interaction network of the termite gut-microbiome to have a system-level understanding of metabolic communication. Metagenomic data of Nasutitermes corniger have been analyzed to identify microbial communities in different gut segments. A comprehensive metabolic cross-feeding network of 205 microbes and 265 metabolites was developed using published experimental data. Reconstruction of inter-species influence network elucidated the role of 37 influential microbes to maintain a stable and functional microbiota. Furthermore, in order to understand the natural lignocellulose digestion inside N. corniger gut, the metabolic functionality of each influencer was assessed, which further elucidated 15 crucial hemicellulolytic microbes and their corresponding enzyme machinery.


Author(s):  
Vincent Hervé ◽  
Pengfei Liu ◽  
Carsten Dietrich ◽  
David Sillam-Dussès ◽  
Petr Stiblik ◽  
...  

“Higher” termites have been able to colonize all tropical and subtropical regions because of their ability to digest lignocellulose with the aid of their prokaryotic gut microbiota. Over the last decade, numerous studies based on 16S rRNA gene amplicon libraries have largely described both the taxonomy and structure of the prokaryotic communities associated with termite guts. Host diet and microenvironmental conditions have emerged as the main factors structuring the microbial assemblages in the different gut compartments. Additionally, these molecular inventories have revealed the existence of termite-specific clusters that indicate coevolutionary processes in numerous prokaryotic lineages. However, for lack of representative isolates, the functional role of most lineages remains unclear. We reconstructed 589 metagenome-assembled genomes (MAGs) from the different gut compartments of eight higher termite species that encompass 17 prokaryotic phyla. By iteratively building genome trees for each clade, we significantly improved the initial automated assignment, frequently up to the genus level. We recovered MAGs from most of the termite-specific clusters in the radiation of, e.g., Planctomycetes, Fibrobacteres, Bacteroidetes, Euryarchaeota, Bathyarchaeota, Spirochaetes, Saccharibacteria, and Firmicutes, which to date contained only few or no representative genomes. Moreover, the MAGs included abundant members of the termite gut microbiota. This dataset represents the largest genomic resource for arthropod-associated microorganisms available to date and contributes substantially to populating the tree of life. More importantly, it provides a backbone for studying the metabolic potential of the termite gut microbiota, including the key members involved in carbon and nitrogen biogeochemical cycles, and important clues that may help cultivating representatives of these understudied clades.


2013 ◽  
Vol 28 (4) ◽  
pp. 491-494 ◽  
Author(s):  
Hao Zheng ◽  
Dylan Bodington ◽  
Chong Zhang ◽  
Kazuhiko Miyanaga ◽  
Yasunori Tanji ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8614 ◽  
Author(s):  
Vincent Hervé ◽  
Pengfei Liu ◽  
Carsten Dietrich ◽  
David Sillam-Dussès ◽  
Petr Stiblik ◽  
...  

“Higher” termites have been able to colonize all tropical and subtropical regions because of their ability to digest lignocellulose with the aid of their prokaryotic gut microbiota. Over the last decade, numerous studies based on 16S rRNA gene amplicon libraries have largely described both the taxonomy and structure of the prokaryotic communities associated with termite guts. Host diet and microenvironmental conditions have emerged as the main factors structuring the microbial assemblages in the different gut compartments. Additionally, these molecular inventories have revealed the existence of termite-specific clusters that indicate coevolutionary processes in numerous prokaryotic lineages. However, for lack of representative isolates, the functional role of most lineages remains unclear. We reconstructed 589 metagenome-assembled genomes (MAGs) from the different gut compartments of eight higher termite species that encompass 17 prokaryotic phyla. By iteratively building genome trees for each clade, we significantly improved the initial automated assignment, frequently up to the genus level. We recovered MAGs from most of the termite-specific clusters in the radiation of, for example, Planctomycetes, Fibrobacteres, Bacteroidetes, Euryarchaeota, Bathyarchaeota, Spirochaetes, Saccharibacteria, and Firmicutes, which to date contained only few or no representative genomes. Moreover, the MAGs included abundant members of the termite gut microbiota. This dataset represents the largest genomic resource for arthropod-associated microorganisms available to date and contributes substantially to populating the tree of life. More importantly, it provides a backbone for studying the metabolic potential of the termite gut microbiota, including the key members involved in carbon and nitrogen biogeochemical cycles, and important clues that may help cultivating representatives of these understudied clades.


2021 ◽  
Vol 20 (2) ◽  
pp. 419-438
Author(s):  
Sachin Krushna Bhujbal ◽  
Madan Kumar ◽  
Virendra Kumar Vijay ◽  
Vivek Kumar ◽  
Pooja Ghosh

2015 ◽  
Author(s):  
Paul A Ayayee ◽  
Susan C Jones ◽  
Zakee L Sabree

Gut-associated microbes of many insects provide a variety of beneficial nutritive functions to their hosts such as the provisioning of essential amino acids (EAAs) to those that feed on diets limited in assimilable nitrogen (i.e., wood). We investigated this function by the gut microbiota of the eastern subterranean termite (Reticulitermes flavipes) using 13C-stable isotope analysis of EAAs in the diet and termite samples. Evidence of possible microbe input was revealed by 13C-depletion of termite carcass (-27.0 ± 0.43‰, mean ± s.e.), and termite gut filtrate samples (-27.3 ± 0.58‰) relative to their wood diet (-26.0 ± 0.48‰) (F (2, 63) = 6.2, P < 0.004). An investigation of the identity of non-dietary EAA sources determined that termites predominantly incorporated EAAs derived from bacteria, with minor fungal input. The most likely means of EAA acquisition is through proctodeal trophallaxis (mouth-anus feeding), a well-established feature of termite colony nestmates, and subsequent digestion of the microbial fraction in the transferred food. Our study provides empirical data in support of the gut microbial EAA provisioning function in termites by using 13C-stable isotopes to determine the microbial origins of incorporated EAAs in termite tissues.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2082
Author(s):  
Xianfa Xie ◽  
Alonzo B. Anderson ◽  
Latoya J. Wran ◽  
Myrna G. Serrano ◽  
Gregory A. Buck

Background: While there have been a lot of studies on the termite gut microbiota, there has been very little research directly on the cellulose-degrading microbiota in termites or their soil environment. This study addresses this problem by profiling cellulose-degrading bacteria and archaea in the selective cellulose cultures of two samples of the eastern subterranean termite (Reticulitermes flavipes) and one soil sample collected at the same location as one of the termite samples. Methods: All the cultures were examined for cell concentration and remaining cellulose after the culture was completed. The 16S rRNA pyrotag sequencing method was used to identify the prokaryotic microbiota for the three cultures and one termite colony without culture. The MOTHUR, SSU-ALIGN, RDPTools, phyloseq, and other R packages were used for sequence and statistical analyses. Results: Biochemical analyses of the cultures suggested high efficiency of cellulose degradation. Comparative analyses between the cultured and uncultured termite gut microbiota revealed a significant difference. Proteobacteria and Firmicutes were found to be the two most abundant phyla of cellulose-degrading bacteria from the three cultures, but different classes within each phylum dominated the different samples. Shared and sample-specific cellulose-degrading taxa, including a core set of taxa across all the cultures, were identified. Conclusions: Our study demonstrates the importance of using selective cellulose culture to study the cellulose-degrading microbial community. It also revealed that the cellulose-degrading microbiota in the eastern subterranean termite is significantly influenced by the microbiota in the surrounding soil environment. Biochemical analyses showed that the microbial communities enriched from all the selective cultures were efficient in degrading cellulose, and a core set of bacteria have been identified as targets for further functional analyses.


2021 ◽  
Vol 9 (5) ◽  
pp. 2191-2202
Author(s):  
Louison Dumond ◽  
Pui Ying Lam ◽  
Gijs van Erven ◽  
Mirjam Kabel ◽  
Fabien Mounet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document