scholarly journals The functional evolution of termite gut microbiota

2021 ◽  
Author(s):  
Jigyasa Arora ◽  
Yukihiro Kinjo ◽  
Jan Šobotník ◽  
Aleš Buček ◽  
Crystal Clitheroe ◽  
...  

SUMMARYTermites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species, but remains largely unknown in other taxa. We intend to feel this gap and provide a global understanding of the functional evolution of termite gut microbiota. We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that key nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ∼150 million years ago. Therefore, the “world smallest bioreactor” has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception.

2021 ◽  
Author(s):  
Woorim Kang ◽  
Pil Soo Kim ◽  
Euon Jung Tak ◽  
Hojun Sung ◽  
Na-Ri Shin ◽  
...  

Abstract BackgroundCompared to vertebrate gut microbiomes, little is known about the factors shaping the gut microbiomes in invertebrates, especially in non-insect invertebrates. Class Cephalopoda is the only group in the phylum Mollusca characterized by a closed circulatory system and a well-differentiated digestive system to process their carnivorous diet. Despite their key phylogenetic position for comparative studies as well as their ecological and commercial importances, analyses of the cephalopod gut microbiome are limited. In this study, we characterized the gut microbiota of six species of wild cephalopods by Illumina MiSeq sequencing of 16S rRNA gene amplicons.ResultsEach cephalopod gut consisted of a distinct consortium of microbes. Photobacterium and Mycoplasma were prevalent in all cephalopod hosts and were identified as core taxa. The gut microbial composition reflected host phylogeny. The importance of host phylogeny was supported by a detailed oligotype-level analysis of operational taxonomic units assigned to Photobacterium and Mycoplasma, although Photobacterium typically inhabited multiple hosts, whereas Mycoplasma tended to show host-specific colonization. Further, we showed that class Cephalopoda has a distinct gut microbial community from those of other molluscan groups. The gut microbiota of the phylum Mollusca was determined by host phylogeny, diet, and environment (aquatic vs. terrestrial).ConclusionWe provide the first comparative analysis of cephalopod and mollusk gut microbial communities. The gut microbial community of cephalopods is composed of the distinctive microbes and strongly associated with their phylogeny. The genera Photobacterium and Mycoplasma are core taxa in the cephalopod gut microbiota. Collectively, our findings of this study provide evidence that cephalopod and mollusk gut microbiomes reflect phylogeny, environment, and the diet of the host and these data can be suggested to establish future directions for invertebrate gut microbiome research.


2021 ◽  
Author(s):  
Jigyasa Arora ◽  
Yukihiro Kinjo ◽  
Jan Šobotník ◽  
Aleš Buček ◽  
Crystal Clitheroe ◽  
...  

2021 ◽  
Author(s):  
Woorim Kang ◽  
Pil Soo Kim ◽  
Euon Jung Tak ◽  
Hojun Sung ◽  
Na-Ri Shin ◽  
...  

Abstract Background: Compared to vertebrate gut microbiomes, little is known about the factors shaping the gut microbiomes in invertebrates, especially in non-insect invertebrates. Class Cephalopoda is the only group in the phylum Mollusca characterized by a closed circulatory system and a well-differentiated digestive system to process their carnivorous diet. Despite their key phylogenetic position for comparative studies as well as their ecological and commercial importances, analyses of the cephalopod gut microbiome are limited. In this study, we characterized the gut microbiota of six species of wild cephalopods by Illumina MiSeq sequencing of 16S rRNA gene amplicons.Results: Each cephalopod gut consisted of a distinct consortium of microbes. Photobacterium and Mycoplasma were prevalent in all cephalopod hosts and were identified as core taxa. The gut microbial composition reflected host phylogeny. The importance of host phylogeny was supported by a detailed oligotype-level analysis of operational taxonomic units assigned to Photobacterium and Mycoplasma, although Photobacterium typically inhabited multiple hosts, whereas Mycoplasma tended to show host-specific colonization. Further, we showed that class Cephalopoda has a distinct gut microbial community from those of other molluscan groups. The gut microbiota of the phylum Mollusca was determined by host phylogeny, diet, and environment (aquatic vs. terrestrial).Conclusion: We provide the first comparative analysis of cephalopod and mollusk gut microbial communities. The gut microbial community of cephalopods is composed of the distinctive microbes and strongly associated with their phylogeny. The genera Photobacterium and Mycoplasma are core taxa in the cephalopod gut microbiota. Collectively, our findings of this study provide evidence that cephalopod and mollusk gut microbiomes reflect phylogeny, environment, and the diet of the host and these data can be suggested to establish future directions for invertebrate gut microbiome research.


2020 ◽  
Vol 71 (4) ◽  
pp. 257-272
Author(s):  
Onat Başbay ◽  
Mudar Salimeh ◽  
Eddie John

We review the continuing and extensive spread of Papilio demoleus in south-eastern Turkey and in regions of Turkey and Syria adjacent to the north-eastern Mediterranean. Since the authors documented the arrival of this attractive but potentially destructive papilionid species at coastal areas of Syria in 2019, regular monitoring has confirmed successful overwintering there, as well as in Turkey. As previously indicated, P. demoleus is widely recognized as an invasive pest species in Citrus-growing areas of the world and hence its arrival is of potential economic importance to a region in which citrus is widely grown.


Author(s):  
Valentin Sencio ◽  
Marina Gomes Machado ◽  
François Trottein

AbstractBacteria that colonize the human gastrointestinal tract are essential for good health. The gut microbiota has a critical role in pulmonary immunity and host’s defense against viral respiratory infections. The gut microbiota’s composition and function can be profoundly affected in many disease settings, including acute infections, and these changes can aggravate the severity of the disease. Here, we discuss mechanisms by which the gut microbiota arms the lung to control viral respiratory infections. We summarize the impact of viral respiratory infections on the gut microbiota and discuss the potential mechanisms leading to alterations of gut microbiota’s composition and functions. We also discuss the effects of gut microbial imbalance on disease outcomes, including gastrointestinal disorders and secondary bacterial infections. Lastly, we discuss the potential role of the lung–gut axis in coronavirus disease 2019.


Phytomedicine ◽  
2021 ◽  
pp. 153561
Author(s):  
Wei Lin ◽  
Chen Jiang ◽  
Hangxing Yu ◽  
Lingling Wang ◽  
Jiaqi Li ◽  
...  

2020 ◽  
Vol 71 (1) ◽  
pp. 149-161 ◽  
Author(s):  
Ilias Attaye ◽  
Sara-Joan Pinto-Sietsma ◽  
Hilde Herrema ◽  
Max Nieuwdorp

Cardiometabolic disease (CMD), such as type 2 diabetes mellitus and cardiovascular disease, contributes significantly to morbidity and mortality on a global scale. The gut microbiota has emerged as a potential target to beneficially modulate CMD risk, possibly via dietary interventions. Dietary interventions have been shown to considerably alter gut microbiota composition and function. Moreover, several diet-derived microbial metabolites are able to modulate human metabolism and thereby alter CMD risk. Dietary interventions that affect gut microbiota composition and function are therefore a promising, novel, and cost-efficient method to reduce CMD risk. Studies suggest that fermentable carbohydrates can beneficially alter gut microbiota composition and function, whereas high animal protein and high fat intake negatively impact gut microbiota function and composition. This review focuses on the role of macronutrients (i.e., carbohydrate, protein, and fat) and dietary patterns (e.g., vegetarian/vegan and Mediterranean diet) in gut microbiota composition and function in the context of CMD.


2020 ◽  
Vol 26 (6) ◽  
pp. 389-401
Author(s):  
Alicia Hurtado ◽  
Rogelio Palomino ◽  
Ina Georg ◽  
Miguel Lao ◽  
Francisca M Real ◽  
...  

Abstract The identification of new genes involved in sexual development and gonadal function as potential candidates causing male infertility is important for both diagnostic and therapeutic purposes. Deficiency of the onco-miRNA cluster miR-17∼92 has been shown to disrupt spermatogenesis, whereas mutations in its paralog cluster, miR-106b∼25, that is expressed in the same cells, were reported to have no effect on testis development and function. The aim of this work is to determine the role of these two miRNA clusters in spermatogenesis and male fertility. For this, we analyzed miR-106b∼25 and miR-17∼92 single and double mouse mutants and compared them to control mice. We found that miR-106b∼25 knock out testes show reduced size, oligozoospermia and altered spermatogenesis. Transcriptomic analysis showed that multiple molecular pathways are deregulated in these mutant testes. Nevertheless, mutant males conserved normal fertility even when early spermatogenesis and other functions were disrupted. In contrast, miR-17∼92+/−; miR-106b∼25−/− double mutants showed severely disrupted testicular histology and significantly reduced fertility. Our results indicate that miR-106b∼25 and miR-17∼92 ensure accurate gene expression levels in the adult testis, keeping them within the required thresholds. They play a crucial role in testis homeostasis and are required to maintain male fertility. Hence, we have identified new candidate genetic factors to be screened in the molecular diagnosis of human males with reproductive disorders. Finally, considering the well-known oncogenic nature of these two clusters and the fact that patients with reduced fertility are more prone to testicular cancer, our results might also help to elucidate the molecular mechanisms linking both pathologies.


Gut ◽  
2017 ◽  
Vol 67 (5) ◽  
pp. 847-859 ◽  
Author(s):  
Allison Cabinian ◽  
Daniel Sinsimer ◽  
May Tang ◽  
Youngsoon Jang ◽  
Bongkum Choi ◽  
...  

BackgroundInteractions between host immune cells and gut microbiota are crucial for the integrity and function of the intestine. How these interactions regulate immune cell responses in the intestine remains a major gap in the field.AimWe have identified the signalling lymphocyte activation molecule family member 4 (SLAMF4) as an immunomodulator of the intestinal immunity. The aim is to determine how SLAMF4 is acquired in the gut and what its contribution to intestinal immunity is.MethodsExpression of SLAMF4 was assessed in mice and humans. The mechanism of induction was studied using GFPtg bone marrow chimaera mice, lymphotoxin α and TNLG8A-deficient mice, as well as gnotobiotic mice. Role in immune protection was revealed using oral infection with Listeria monocytogenes and Cytobacter rodentium.ResultsSLAMF4 is a selective marker of intestinal immune cells of mice and humans. SLAMF4 induction occurs directly in the intestinal mucosa without the involvement of the gut-associated lymphoid tissue. Gut bacterial products, particularly those of gut anaerobes, and gut-resident antigen-presenting cell (APC)TNLG8A are key contributors of SLAMF4 induction in the intestine. Importantly, lack of SLAMF4 expression leads the increased susceptibility of mice to infection by oral pathogens culminating in their premature death.ConclusionsSLAMF4 is a marker of intestinal immune cells which contributes to the protection against enteric pathogens and whose expression is dependent on the presence of the gut microbiota. This discovery provides a possible mechanism for answering the long-standing question of how the intertwining of the host and gut microbial biology regulates immune cell responses in the gut.


Sign in / Sign up

Export Citation Format

Share Document