Improving the Efficiency of Anaerobic Digestion: Domesticated Paddy Soil Microbial Enhances the Hydrolytic Acidification of Rice Straw and Pig Manure

2021 ◽  
Author(s):  
Chen Yan ◽  
Xian Cui ◽  
Yuhuan Liu ◽  
Leipeng Cao ◽  
Jianghua Xiong ◽  
...  
Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 561
Author(s):  
Enze Wang ◽  
Xiaolong Lin ◽  
Lei Tian ◽  
Xinguang Wang ◽  
Li Ji ◽  
...  

Rice straw is a byproduct of agricultural production and an important agricultural resource. However, rice straw has not yet been effectively used, and incorrect treatment methods (such as burning in the field) can cause serious damage to the environment. Studies have shown that straw returning is beneficial to soil, but there have been few studies focused on the effect of the amount of short-term straw returned on the soil microbial community. This study evaluates 0%, 50%, 75%, and 100% rice straw returned to the field on whether returning different amounts of straw in the short term would affect the diversity and composition of the soil microbial community and the correlation between bacteria and fungi. The results show that the amount of straw returned to the field is the main factor that triggers the changes in the abundance and composition of the microbial community in the paddy soil. A small amount of added straw (≤ 50% straw added) mainly affects the composition of the bacterial community, while a larger amount of added straw (> 50% straw added) mainly affects the composition of the fungal community. Returning a large amount of straw increases the microbial abundance related to carbon and iron cycles in the paddy soil, thus promoting the carbon and iron cycle processes to a certain extent. In addition, network analysis shows that returning a large amount of straw also increases the complexity of the microbial network, which may encourage more microbes to be niche-sharing and comprehensively improve the ecological environment of paddy soil. This study may provide some useful guidance for rice straw returning in northeast China.


2016 ◽  
Vol 122 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Sheng Zhou ◽  
Marcell Nikolausz ◽  
Jining Zhang ◽  
Shohei Riya ◽  
Akihiko Terada ◽  
...  

2018 ◽  
Vol 76 ◽  
pp. 350-356 ◽  
Author(s):  
Shohei Riya ◽  
Kazuhiro Suzuki ◽  
Lingyu Meng ◽  
Sheng Zhou ◽  
Akihiko Terada ◽  
...  

2015 ◽  
Vol 61 (3-4) ◽  
pp. 146-156 ◽  
Author(s):  
Yun Wu ◽  
Chuan-Hai Li ◽  
Juan Zhao ◽  
Yong-Liang Xiao ◽  
Hui Cao

The soil microbial community research conducted in the field has focused on the genetic diversity of these organisms. In this study, we assessed the proteins expressed in soil microbial communities following the long-term application of mineral fertilizer (NPK) and organic manure (M) to paddy soil, indirect extraction method and separated via two-dimensional (2D) gel electrophoresis and identified using a matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) approach. We found that the number of cells in the primary soil in the M treatment was significantly greater than in the NPK and CK treatments. The numbers of cells extracted were consistent with the total cell numbers and the concentration of extracted proteins (CK < NPK < M). 303 and 306 protein spots being detected in the CK map and NPK map, respectively. Eleven spots of interest were identified in the 2D gels, including 8 different protein spots and 3 unique protein spots. Three common proteins involved in protein hydrolysis and glutamate synthesis and metabolism. Eight differentially expressed proteins involved in DNA replication, transcription, protein folding and energy metabolism, the processes of cofactor and vitamin metabolism, transcriptional regulation, recombination and xenobiotic compound biodegradation and metabolism. The long-term application of fertilization resulted in significant changes in the microbial community structure and function, and the long-term application of pig manure significantly increased the microbial biomass and the functional and structural diversity in the soil. It is very interesting to address the MS identification of intracellular proteins from microbial communities under different fertilizer treatments in a paddy soil.


Chemosphere ◽  
2021 ◽  
Vol 274 ◽  
pp. 129971
Author(s):  
Ibrahim Mohamed ◽  
Mohamed A. Bassouny ◽  
Mohamed H.H. Abbas ◽  
Zhan Ming ◽  
Cao Cougui ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Karol Postawa ◽  
Jerzy Szczygieł ◽  
Marek Kułażyński

Abstract Background Increasing the efficiency of the biogas production process is possible by modifying the technological installations of the biogas plant. In this study, specific solutions based on a mathematical model that lead to favorable results were proposed. Three configurations were considered: classical anaerobic digestion (AD) and its two modifications, two-phase AD (TPAD) and autogenerative high-pressure digestion (AHPD). The model has been validated based on measurements from a biogas plant located in Poland. Afterward, the TPAD and AHPD concepts were numerically tested for the same volume and feeding conditions. Results The TPAD system increased the overall biogas production from 9.06 to 9.59%, depending on the feedstock composition, while the content of methane was slightly lower in the whole production chain. On the other hand, the AHPD provided the best purity of the produced fuel, in which a methane content value of 82.13% was reached. At the same time, the overpressure leads to a decrease of around 7.5% in the volumetric production efficiency. The study indicated that the dilution of maize silage with pig manure, instead of water, can have significant benefits in the selected configurations. The content of pig slurry strengthens the impact of the selected process modifications—in the first case, by increasing the production efficiency, and in the second, by improving the methane content in the biogas. Conclusions The proposed mathematical model of the AD process proved to be a valuable tool for the description and design of biogas plant. The analysis shows that the overall impact of the presented process modifications is mutually opposite. The feedstock composition has a moderate and unsteady impact on the production profile, in the tested modifications. The dilution with pig manure, instead of water, leads to a slightly better efficiency in the classical configuration. For the TPAD process, the trend is very similar, but the AHPD biogas plant indicates a reverse tendency. Overall, the recommendation from this article is to use the AHPD concept if the composition of the biogas is the most important. In the case in which the performance is the most important factor, it is favorable to use the TPAD configuration.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2561
Author(s):  
Furqan Muhayodin ◽  
Albrecht Fritze ◽  
Oliver Christopher Larsen ◽  
Marcel Spahr ◽  
Vera Susanne Rotter

Rice straw is an agricultural residue produced in abundant quantities. Open burning and plowing back the straw to the fields are common practices for its disposal. In-situ incorporation and burning cause emissions of greenhouse gas and particulate matter. Additionally, the energy potential of rice straw is lost. Anaerobic digestion is a technology that can be potentially used to utilize the surplus rice straw, provide renewable energy, circulate nutrients available in the digestate, and reduce greenhouse gas emissions from rice paddies. An innovative temperature phased anaerobic digestion technology was developed and carried out in a continuous circulating mode of mesophilic and hyperthermophilic conditions in a loop digester (F1). The performance of the newly developed digester was compared with the reference digester (F2) working at mesophilic conditions. Co-digestion of rice straw was carried out with cow manure to optimize the carbon to nitrogen ratio and to provide the essential trace elements required by microorganisms in the biochemistry of methane formation. F1 produced a higher specific methane yield (189 ± 37 L/kg volatile solids) from rice straw compared to F2 (148 ± 36 L/kg volatile solids). Anaerobic digestion efficiency was about 90 ± 20% in F1 and 70 ± 20% in F2. Mass fractions of Fe, Ni, Co, Mo, Cu, and Zn were analyzed over time. The mass fractions of Co, Mo, Cu, and Zn were stable in both digesters. While mass fractions of Fe and Ni were reduced at the end of the digestion period. However, no direct relationship between specific methane yield and reduced mass fraction of Fe and Ni was found. Co-digestion of rice straw with cow manure seems to be a good approach to provide trace elements except for Se.


Sign in / Sign up

Export Citation Format

Share Document